ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Temperature Growth of Graphene on Semiconductor

114   0   0.0 ( 0 )
 نشر من قبل H{\\aa}kon R{\\o}st
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The industrial realization of graphene has so far been limited by challenges related to the quality, reproducibility, and high process temperatures required to manufacture graphene on suitable substrates. We demonstrate that epitaxial graphene can be grown on transition metal treated 6H-SiC(0001) surfaces, with an onset of graphitization starting around $450-500^circtext{C}$. From the chemical reaction between SiC and thin films of Fe or Ru, $text{sp}^{3}$ carbon is liberated from the SiC crystal and converted to $text{sp}^{2}$ carbon at the surface. The quality of the graphene is demonstrated using angle-resolved photoemission spectroscopy and low-energy electron diffraction. Furthermore, the orientation and placement of the graphene layers relative to the SiC substrate is verified using angle-resolved absorption spectroscopy and energy-dependent photoelectron spectroscopy, respectively. With subsequent thermal treatments to higher temperatures, a steerable diffusion of the metal layers into the bulk SiC is achieved. The result is graphene supported on magnetic silicide or optionally, directly on semiconductor, at temperatures ideal for further large-scale processing into graphene based device structures.

قيم البحث

اقرأ أيضاً

The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these pro blems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C$_2$H$_4$) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by $30^circ$ with respect to each other. The growth mode is attributed to the mechanism when small graphene molecules nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
This article presents studies on low-field electrical conduction in the range 4-to-300 K for a ultrafast material: InGaAs:ErAs grown by molecular beam epitaxy. The unique properties include nano-scale ErAs crystallines in host semiconductor, a deep F ermi level, and picosecond ultrafast photocarrier recombination. As the temperature drops, the conduction mechanisms are in the sequence of thermal activation, nearest-neighbor hopping, variable-range hopping, and Anderson localization. In the low-temperature limit, finite-conductivity metallic behavior, not insulating, was observed. This unusual conduction behavior is explained with the Abrahams scaling theory.
Self-assisted growth of InAs nanowires on graphene by molecular beam epitaxy is reported. Nanowires with diameter of ~50 nm and aspect ratio of up to 100 were achieved. The morphological and structural properties of the nanowires were carefully studi ed by changing the substrate from bilayer graphene through buffer layer to quasi-free-standing monolayer graphene. The positional relation of the InAs NWs with the graphene substrate was determined. A 30{deg} orientation configuration of some of the InAs NWs is shown to be related to the surface corrugation of the graphene substrate. InAs NW-based devices for transport measurements were fabricated, and the conductance measurements showed a semi-ballistic behavior. In Josephson junction measurements in the non-linear regime, Multiple Andreev Reflections were observed, and an inelastic scattering length of about 900 nm was derived.
Bimetal transition iodides in two-dimensional scale provide an interesting idea to combine a set of single-transition-metal ferromagnetic semiconductors together. Motivated by structural engineering on bilayer CrI$_3$ to tune its magnetism and works that realize ideal properties by stacking van der Waals transitional metal dichalcogenides in a certain order. Here we stack monolayer VI$_3$ onto monolayer CrI$_3$ with a middle-layer I atoms discarded to construct monolayer V$_2$Cr$_2$I$_9$. Based on this crystal model, the stable and metastable phases are determined among 7 possible phases by first-principles calculations. It is illustrated that both the two phases have Curie temperature $sim$ 6 (4) times higher than monolayer CrI$_3$ and VI$_3$. The reason can be partly attributed to their large magnetic anisotropy energy (the maximum value reaches 412.9 $mu$eV/atom). More importantly, the Curie temperature shows an electric field and strain dependent character and can even surpass room temperature under a moderate strain range. At last, we believe that the bimetal transition iodide V$_2$Cr$_2$I$_9$ monolayer would support potential opportunities for spintronic devices.
The low-temperature thermal conductivity in polycrystalline graphene is theoretically studied. The contributions from three branches of acoustic phonons are calculated by taking into account scattering on sample borders, point defects and grain bound aries. Phonon scattering due to sample borders and grain boundaries is shown to result in a $T^{alpha}$-behaviour in the thermal conductivity where $alpha$ varies between 1 and 2. This behaviour is found to be more pronounced for nanosized grain boundaries. PACS: 65.80.Ck, 81.05.ue, 73.43.Cd
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا