ﻻ يوجد ملخص باللغة العربية
A viable model for inflation driven by a torsion function in a Friedmann background is presented. The scalar spectral index in the interval $0.92lesssim n_{s}lesssim 0.97$ is obtained in order to satisfy the initial conditions for inflation. The post inflationary phase is also studied, and the analytical solutions obtained for scale factor and energy density generalizes that ones for a matter dominated universe, indicating just a small deviation from the standard model evolution. The same kind of torsion function used also describes satisfactorily the recent acceleration of the universe, which could indicate a possible unification of different phases, apart form specific constants.
We consider cosmological dynamics of nonminimally coupled scalar field in the scalar-torsion gravity in the presence of a hydrodynamical matter. Potential of the scalar field have been chosen as power-law with negative index, this type of potentials
Suppose that the early Universe starts with a quantum spacetime originated cosmological $Lambda$-term at the Planck scale $M_{rm pl}$. The cosmological energy density $rho_{_{_Lambda}}$ drives inflation and simultaneously reduces its value to create
The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperatu
A teleparallel geometry is an n-dimensional manifold equipped with a frame basis and an independent spin connection. For such a geometry, the curvature tensor vanishes and the torsion tensor is non-zero. A straightforward approach to characterizing t
We investigate the cosmological dynamics in teleparallel gravity with nonminimal coupling. We analytically extract several asymptotic solutions and we numerically study the exact phase-space behavior. Comparing the obtained results with the correspon