ترغب بنشر مسار تعليمي؟ اضغط هنا

Common origin of radiative neutrino mass, dark matter and leptogenesis in scotogenic Georgi-Machacek model

131   0   0.0 ( 0 )
 نشر من قبل Amit Dutta Banik
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the phenomenology of the Georgi-Machacek model extended with two Higgs doublets and vector fermion doublets invariant under $SU(2)_L times U(1)_Ytimes mathcal {Z}_4 times mathcal {Z}_2$. The $mathcal {Z}_4$ symmetry is broken spontaneously while the imposed $mathcal {Z}_2$ symmetry forbids triplet fields to generate any vacuum expectation value and leading to an inert dark sector providing a viable candidate for dark matter and generate neutrino mass radiatively. Another interesting feature of the model is leptogenesis arising from decay of vector-like fermions. A detailed study of the model is pursued in search for available parameter space consistent with the theoretical and experimental observations for dark matter, neutrino physics, flavor physics, matter-antimatter asymmetry in the Universe.

قيم البحث

اقرأ أيضاً

In the Minimal Supersymmetric Standard Model (MSSM), the scalar neutrino $tilde{ u}_L$ has odd R parity, yet it has long been eliminated as a dark-matter candidate because it scatters elastically off nuclei through the $Z$ boson, yielding a cross sec tion many orders of magnitude above the experimental limit. We show how it can be reinstated as a dark-matter candidate by splitting the masses of its real and imaginary parts in an extension of the MSSM with scalar triplets. As a result, radiative Majorana neutrino masses are also generated. In addition, decays of the scalar triplets relate the abundance of this asymmetric dark matter to the baryon asymmetry of the Universe through leptogenesis.
We study the minimal scotogenic model constituting an additional inert Higgs doublet and three sets of right-handed neutrinos. The scotogenic model connects dark matter, baryon asymmetry of the Universe and neutrino oscillation data. In our work, we obtain baryogenesis by the decay of TeV scale heavy neutral singlet fermion ($N_{2}$). We primarily focus on the intermediate-mass region of dark matter within $M_W<M_{DM}le550$ GeV, where observed relic density is suppressed due to co-annihilation processes. We consider thermal as well as the non-thermal approach of dark matter production and explore the possibility of the lightest stable candidate being a dark matter candidate. Within the inert Higgs doublet (IHD) desert, we explore a new allowed region of dark matter masses for the non-thermal generation of dark matter with a mass splitting of 10 GeV among the inert scalars. We also see the variation of relic abundance for unequal mass splitting among the scalars. The KamLand-Zen bound on the effective mass of the active neutrinos is also verified in this study.
In this letter, we propose an extension of the scotogenic model where singlet Majorana particle can be dark matter (DM) without the need of a highly suppressed scalar coupling of the order $O(10^{-10})$. For that, the SM is extended with three single t Majorana fermions, an inert scalar doublet, and two (a complex and a real) singlet scalars, with a global $Z_{4}$ symmetry that is spontaneously broken into $Z_{2}$ at a scale higher than the electroweak one by the vev of the complex singlet scalar. In this setup, the smallness of neutrino mass is achieved via the cancellation between three diagrams a la scotogenic, a DM candidate that is viable for a large mass range; and the phenomenology is richer than the minimal scotogenic model.
In this work, we explain three beyond standard model (BSM) phenomena, namely neutrino masses, the baryon asymmetry of the Universe and Dark Matter, within a single model and in each explanation the right handed (RH) neutrinos play the prime role. Ind eed by just introducing two RH neutrinos we can generate the neutrino masses by the Type-I seesaw mechanism. The baryon asymmetry of the Universe can arise from thermal leptogenesis from the decay of lightest RH neutrino before the decoupling of the electroweak sphaleron transitions, which redistribute the $ B-L $ number into a baryon number. At the same time, the decay of the RH neutrino can produce the Dark Matter (DM) as an asymmetric Dark Matter component. The source of CP violation in the two sectors is exactly the same, related to the complex couplings of the neutrinos. By determining the comoving number density for different values of the CP violation in the DM sector, we obtain a particular value of the DM mass after satisfying the relic density bound. We also give prediction for the DM direct detection (DD) in the near future by different ongoing DD experiments.
We propose a model of asymmetric dark matter (DM) where the dark sector is an identical copy of both forces and matter of the standard model (SM) as in the mirror universe models discussed in literature. In addition to being connected by gravity, the SM and DM sectors are also connected at high temperature by a common set of heavy right-handed Majorana neutrinos via their Yukawa couplings to leptons and Higgs bosons. The lightest nucleon in the dark (mirror) sector is a candidate for dark matter. The out of equilibrium decay of right-handed neutrino produces equal lepton asymmetry in both sectors via resonant leptogenesis which then get converted to baryonic and dark baryonic matter. The dark baryon asymmetry due to higher dark nucleon masses leads to higher dark matter density compared to the familiar baryon density that is observed. The standard model neutrinos in this case acquire masses from the inverse seesaw mechanism. A kinetic mixing between the U(1) gauge fields of the two sectors is introduced to guarantee the success of Big-Bang Nucleosynthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا