ﻻ يوجد ملخص باللغة العربية
The presence of a quantum critical point separating two distinct zero-temperature phases is thought to underlie the `strange metal state of many high-temperature superconductors. The nature of this quantum critical point, as well as a description of the resulting strange metal, are central open problems in condensed matter physics. In large part, the controversy stems from the lack of a clear broken symmetry to characterize the critical phase transition, and this challenge is no clearer than in the example of the unconventional superconductor CeCoIn$_5$. Through Hall effect and Fermi surface measurements of CeCoIn$_5$, in comparison to ab initio calculations, we find evidence for a critical point that connects two Fermi surfaces with different volumes without apparent symmetry-breaking, indicating the presence of a transition that involves an abrupt localization of one sector of the charge degrees of freedom. We present a model for the anomalous electrical Hall resistivity of this material based on the conductivity of valence charge fluctuations.
Quantum criticality in the normal and superconducting state of the heavy-fermion metal CeCoIn$_5$ is studied by measurements of the magnetic Gr{u}neisen ratio, $Gamma_H$, and specific heat in different field orientations and temperatures down to 50 m
The thermal Hall conductivity $kappa_{xy}$ and Hall conductivity $sigma_{xy}$ in CeCoIn$_5$ are used to determine the Lorenz number ${cal L}_H$ at low temperature $T$. This enables the separation of the observed thermal conductivity into its electron
The Ce compounds CeCoIn$_5$ and CeRhIn$_5$ are ideal model systems to study the competition of antiferromagnetism (AF) and superconductivity (SC). Here we discuss the pressure--temperature and magnetic field phase diagrams of both compounds. In CeRhI
We present nuclear magnetic resonance (NMR) measurements on the three distinct In sites of CeCoIn$_5$ with magnetic field applied in the [100] direction. We identify the microscopic nature of the long range magnetic order (LRO) stabilized at low temp
The heavy-fermion superconductor CeCoIn$_5$ displays an additional transition within its superconducting (SC) state, whose nature is characterized by high-precision studies of the isothermal field dependence of the entropy, derived from combined spec