ﻻ يوجد ملخص باللغة العربية
Harmonic oscillators count among the most fundamental quantum systems with important applications in molecular physics, nanoparticle trapping, and quantum information processing. Their equidistant energy level spacing is often a desired feature, but at the same time a challenge if the goal is to deterministically populate specific eigenstates. Here, we show how interference in the transition amplitudes in a bichromatic laser field can suppress the sequential climbing of harmonic oscillator states (Kapitza-Dirac blockade) and achieve selective excitation of energy eigenstates, Schr{o}dinger cats and other non-Gaussian states. This technique can transform the harmonic oscillator into a coherent two-level system or be used to build a large-momentum-transfer beam splitter for matter-waves. To illustrate the universality of the concept, we discuss feasible experiments that cover many orders of magnitude in mass, from single electrons over large molecules to dielectric nanoparticles.
I demonstrate the potential of reinforcement learning (RL) to prepare quantum states of strongly periodically driven non-linear single-particle models. The ability of Q-Learning to control systems far away from equilibrium is exhibited by steering th
We propose a protocol for coherently transferring non-Gaussian quantum states from optical field to a mechanical oscillator. The open quantum dynamics and continuous-measurement process, which can not be treated by the stochastic-master-equation form
The generation of non-classical states of light via photon blockade with time-modulated input is analyzed. We show that improved single photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternativ
We present a heralded state preparation scheme for driven nonlinear open quantum systems. The protocol is based on a continuous photon counting measurement of the systems decay channel. When no photons are detected for a period of time, the system ha
A proposal for the generation of singlet states of three $Lambda$-type Rydberg atoms is presented. The singlet state is prepared through the combination of a Rydberg state and an EPR pair, and the scheme relies on the Rydberg blockade effect which pr