ﻻ يوجد ملخص باللغة العربية
Matrix scaling and matrix balancing are two basic linear-algebraic problems with a wide variety of applications, such as approximating the permanent, and pre-conditioning linear systems to make them more numerically stable. We study the power and limitations of quantum algorithms for these problems. We provide quantum implementations of two classical (in both senses of the word) methods: Sinkhorns algorithm for matrix scaling and Osbornes algorithm for matrix balancing. Using amplitude estimation as our main tool, our quantum implementations both run in time $tilde O(sqrt{mn}/varepsilon^4)$ for scaling or balancing an $n times n$ matrix (given by an oracle) with $m$ non-zero entries to within $ell_1$-error $varepsilon$. Their classical analogs use time $tilde O(m/varepsilon^2)$, and every classical algorithm for scaling or balancing with small constant $varepsilon$ requires $Omega(m)$ queries to the entries of the input matrix. We thus achieve a polynomial speed-up in terms of $n$, at the expense of a worse polynomial dependence on the obtained $ell_1$-error $varepsilon$. We emphasize that even for constant $varepsilon$ these problems are already non-trivial (and relevant in applications). Along the way, we extend the classical analysis of Sinkhorns and Osbornes algorithm to allow for errors in the computation of marginals. We also adapt an improved analysis of Sinkhorns algorithm for entrywise-positive matrices to the $ell_1$-setting, leading to an $tilde O(n^{1.5}/varepsilon^3)$-time quantum algorithm for $varepsilon$-$ell_1$-scaling in this case. We also prove a lower bound, showing that our quantum algorithm for matrix scaling is essentially optimal for constant $varepsilon$: every quantum algorithm for matrix scaling that achieves a constant $ell_1$-error with respect to uniform marginals needs to make at least $Omega(sqrt{mn})$ queries.
We study quantum algorithms that learn properties of a matrix using queries that return its action on an input vector. We show that for various problems, including computing the trace, determinant, or rank of a matrix or solving a linear system that
We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix $Ainmathbb{R}^{ntimes d}$, sublinear algorithms for the matrix game $min_
We consider two matrix completion problems, in which we are given a matrix with missing entries and the task is to complete the matrix in a way that (1) minimizes the rank, or (2) minimizes the number of distinct rows. We study the parameterized comp
We consider the task of approximating the ground state energy of two-local quantum Hamiltonians on bounded-degree graphs. Most existing algorithms optimize the energy over the set of product states. Here we describe a family of shallow quantum circui
We exhibit a randomized algorithm which given a square $ntimes n$ complex matrix $A$ with $|A| le 1$ and $delta>0$, computes with high probability invertible $V$ and diagonal $D$ such that $$|A-VDV^{-1}|le delta $$ and $|V||V^{-1}| le O(n^{2.5}/delta