ﻻ يوجد ملخص باللغة العربية
The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated within the statistical Hauser-Feshbach reaction model. Such an approach, assuming a high level density in the compound system, can be questioned in light and neutron-rich nuclei for which only a few or no resonant states are available. Therefore, in this work we focus on the direct neutron-capture process. We employ a shell-model approach in several model spaces with well-established effective interactions to calculate spectra and spectroscopic factors in a set of 50 neutron-rich target nuclei in different mass regions, including doubly-, semi-magic and deformed ones. Those theoretical energies and spectroscopic factors are used to evaluate direct neutron capture rates and to test global theoretical models using average spectroscopic factors and level densities based on the Hartree-Fock-Bogoliubov plus combinatorial method. The comparison of shell-model and global model results reveals several discrepancies that can be related to problems in level densities. All the results show however that the direct capture is non-negligible with respect to the by-default Hauser-Feshbach predictions and can be even 100 times more important for the most neutron-rich nuclei close to the neutron drip line.
We discuss the present status of the description of the structure of the very neutron rich nuclei, in the framework of modern large scale shell model calculations. Particular attention is paid to the interaction related issues, as well as to the prob
Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential mode. The interference effect is tested
We present a comprehensive study on the low-lying states of neutron-rich Er, Yb, Hf, and W isotopes across the $N=126$ shell with a multi-reference covariant density functional theory. Beyond mean-field effects from shape mixing and symmetry restorat
A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities ar