ﻻ يوجد ملخص باللغة العربية
Heterogeneous information network (HIN) has been widely used to characterize entities of various types and their complex relations. Recent attempts either rely on explicit path reachability to leverage path-based semantic relatedness or graph neighborhood to learn heterogeneous network representations before predictions. These weakly coupled manners overlook the rich interactions among neighbor nodes, which introduces an early summarization issue. In this paper, we propose GraphHINGE (Heterogeneous INteract and aggreGatE), which captures and aggregates the interactive patterns between each pair of nodes through their structured neighborhoods. Specifically, we first introduce Neighborhood-based Interaction (NI) module to model the interactive patterns under the same metapaths, and then extend it to Cross Neighborhood-based Interaction (CNI) module to deal with different metapaths. Next, in order to address the complexity issue on large-scale networks, we formulate the interaction modules via a convolutional framework and learn the parameters efficiently with fast Fourier transform. Furthermore, we design a novel neighborhood-based selection (NS) mechanism, a sampling strategy, to filter high-order neighborhood information based on their low-order performance. The extensive experiments on six different types of heterogeneous graphs demonstrate the performance gains by comparing with state-of-the-arts in both click-through rate prediction and top-N recommendation tasks.
There is an influx of heterogeneous information network (HIN) based recommender systems in recent years since HIN is capable of characterizing complex graphs and contains rich semantics. Although the existing approaches have achieved performance impr
In the past decade, the heterogeneous information network (HIN) has become an important methodology for modern recommender systems. To fully leverage its power, manually designed network templates, i.e., meta-structures, are introduced to filter out
Heterogeneous information network (HIN) is widely applied to recommendation systems due to its capability of modeling various auxiliary information with meta-path. However, existing HIN-based recommendation models usually fuse the information from va
Attention mechanism enables the Graph Neural Networks(GNNs) to learn the attention weights between the target node and its one-hop neighbors, the performance is further improved. However, the most existing GNNs are oriented to homogeneous graphs and
Understanding complex social interactions among agents is a key challenge for trajectory prediction. Most existing methods consider the interactions between pairwise traffic agents or in a local area, while the nature of interactions is unlimited, in