ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable pinwheel artificial-spin-ice and superconductor hybrid device

80   0   0.0 ( 0 )
 نشر من قبل Yong-Lei Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to control the potential landscape in a medium of interacting particles could lead to intriguing collective behavior and innovative functionalities. Here, we utilize spatially reconfigurable magnetic potentials of a pinwheel artificial spin ice structure to tailor the motion of superconducting vortices. The reconstituted chain structures of the magnetic charges in the artificial pinwheel spin ice and the strong interaction between magnetic charges and superconducting vortices allow significant modification of the transport properties of the underlying superconducting thin film, resulting in a reprogrammable resistance state that enables a reversible and switchable vortex Hall effect. Our results highlight an effective and simple method of using artificial spin ice as an in-situ reconfigurable nanoscale energy landscape to design reprogrammable superconducting electronics, which could also be applied to the in-situ control of properties and functionalities in other magnetic particle systems, such as magnetic skyrmions.

قيم البحث

اقرأ أيضاً

Rotating all islands in square artificial spin ice (ASI) uniformly about their centres gives rise to the recently reported pinwheel ASI. At angles around 45$^mathrm{o}$, the antiferromagnetic ordering changes to ferromagnetic and the magnetic configu rations of the system exhibit near-degeneracy, making it particularly sensitive to small perturbations. We investigate through micromagnetic modelling the influence of dipolar fields produced by physically extended islands in field-driven magnetisation processes in pinwheel arrays, and compare the results to hysteresis experiments performed in-situ using Lorentz transmission electron microscopy. We find that magnetisation end-states induce a Heisenberg pseudo-exchange interaction that governs both the inter-island coupling and the resultant array reversal process. Symmetry reduction gives rise to anisotropies and array-corner mediated avalanche reversals through a cascade of nearest-neighbour (NN) islands. The symmetries of the anisotropy axes are related to those of the geometrical array but are misaligned to the array axes as a result of the correlated interactions between neighbouring islands. The NN dipolar coupling is reduced by decreasing the island size and, using this property, we track the transition from the strongly coupled regime towards the pure point dipole one and observe modification of the ferromagnetic array reversal process. Our results shed light on important aspects of the interactions in pinwheel ASI, and demonstrate a mechanism by which their properties may be tuned for use in a range of fundamental research and spintronic applications.
We numerically examine the ordering, pinning and flow of superconducting vortices interacting with a Santa Fe artificial ice pinning array. We find that as a function of magnetic field and pinning density, a wide variety of vortex states occur, inclu ding ice rule obeying states and labyrinthine patterns. In contrast to square pinning arrays, we find no sharp peaks in the critical current due to the inherent frustration effect imposed by the Santa Fe ice geometry; however, there are some smoothed peaks when the number of vortices matches the number of pinning sites. For some fillings, the Santa Fe array exhibits stronger pinning than the square array due to the suppression of one-dimensional flow channels when the vortex motion in the Santa Fe lattice occurs through the formation of both longitudinal and transverse flow channels.
Artificial spin ices are ensembles of geometrically-arranged, interacting nanomagnets which have shown promising potential for the realization of reconfigurable magnonic crystals. Such systems allow for the manipulation of spin waves on the nanoscale and their potential use as information carriers. However, there are presently two general obstacles to the realization of artificial spin ice-based magnonic crystals: the magnetic state of artificial spin ices is difficult to reconfigure and the magnetostatic interactions between the nanoislands are often weak, preventing mode coupling. We demonstrate, using micromagnetic modeling, that coupling a reconfigurable artificial spin ice geometry made of weakly interacting nanomagnets to a soft magnetic underlayer creates a complex system exhibiting dynamically coupled modes. These give rise to spin wave channels in the underlayer at well-defined frequencies, based on the artificial spin ice magnetic state, which can be reconfigured. These findings open the door to the realization of reconfigurable magnonic crystals with potential applications for data transport and processing in magnonic-based logic architectures.
Artificial square spin ices are structures composed of magnetic elements arranged on a geometrically frustrated lattice and located on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each verte x. Using a semi-analytical approach, we show that square spin ices exhibit a rich spin wave band structure that is tunable both by external magnetic fields and the configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semi-analytical approach. Our results show that artificial square spin ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.
We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two s uperconductor Nb contacts on a Si/SiO$_2$ substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا