ﻻ يوجد ملخص باللغة العربية
Vital to primary visual processing, retinal circuitry shows many similar structures across a very broad array of species, both vertebrate and non-vertebrate, especially functional components such as lateral inhibition. This surprisingly conservative pattern raises a question of how evolution leads to it, and whether there is any alternative that can also prompt helpful preprocessing. Here we design a method using genetic algorithm that, with many degrees of freedom, leads to architectures whose functions are similar to biological retina, as well as effective alternatives that are different in structures and functions. We compare this model to natural evolution and discuss how our framework can come into goal-driven search and sustainable enhancement of neural network models in machine learning.
An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called memristive neural networks. Here, we demonstrate that such models have nothing in common with the concept of
This paper presents an implementation of multilayer feed forward neural networks (NN) to optimize CMOS analog circuits. For modeling and design recently neural network computational modules have got acceptance as an unorthodox and useful tool. To ach
Neuroevolution is a process of training neural networks (NN) through an evolutionary algorithm, usually to serve as a state-to-action mapping model in control or reinforcement learning-type problems. This paper builds on the Neuro Evolution of Augmen
Spiking neural networks (SNNs) has attracted much attention due to its great potential of modeling time-dependent signals. The firing rate of spiking neurons is decided by control rate which is fixed manually in advance, and thus, whether the firing
Sensory predictions by the brain in all modalities take place as a result of bottom-up and top-down connections both in the neocortex and between the neocortex and the thalamus. The bottom-up connections in the cortex are responsible for learning, pa