ﻻ يوجد ملخص باللغة العربية
We study numerically the behavior of RNA secondary structures under influence of a varying external force. This allows to measure the work $W$ during the resulting fast unfolding and refolding processes. Here, we investigate a medium-size hairpin structure. Using a sophisticated large-deviation algorithm, we are able to measure work distributions with high precision down to probabilities as small as $10^{-46}$. Due to this precision and by comparison with exact free-energy calculations we are able to verify the theorems of Crooks and Jarzynski. Furthermore, we analyze force-extension curves and the configurations of the secondary structures during unfolding and refolding for typical equilibrium processes and non-equilibrium processes, conditioned to selected values of the measured work $W$, typical and rare ones. We find that the non-equilibrium processes where the work values are close to those which are most relevant for applying Crooks and Jarzynski theorems, respectively, are most and quite similar to the equilibrium processes. Thus, a similarity of equilibrium and non-equilibrium behavior with respect to a mere scalar variable, which occurs with a very small probability but can be generated in a controlled but non-targeted way, is related to a high similarity for the set of configurations sampled along the full dynamical trajectory.
In this paper we propose a new formalism to map history-dependent metadynamics in a Markovian process. We apply this formalism to a model Langevin dynamics and determine the equilibrium distribution of a collection of simulations. We demonstrate that
The mechanical unfolding of a simple RNA hairpin and of a 236--bases portion of the Tetrahymena thermophila ribozyme is studied by means of an Ising--like model. Phase diagrams and free energy landscapes are computed exactly and suggest a simple two-
Estimating the expected value of an observable appearing in a non-equilibrium stochastic process usually involves sampling. If the observables variance is high, many samples are required. In contrast, we show that performing the same task without sam
The Jarzynski identity can be applied to instances when a microscopic system is pulled repeatedly but quickly along some coordinate, allowing the calculation of an equilibrium free energy profile along the pulling coordinate from a set of independent
We demonstrate that the clustering statistics and the corresponding phase transition to non-equilibrium clustering found in many experiments and simulation studies with self-propelled particles (SPPs) with alignment can be obtained from a simple kine