ﻻ يوجد ملخص باللغة العربية
HIRES will be the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 mic (goal 0.35-1.8 mic) at a spectral resolution of ~100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing and diffraction-limited modes. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Some of the top science cases will be the detection of bio signatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Natures fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
The first generation of E-ELT instruments will include an optical-infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet form
MOSAIC is the planned multi-object spectrograph for the 39m Extremely Large Telescope (ELT). Conceived as a multi-purpose instrument, it offers both high multiplex and multi-IFU capabilities at a range of intermediate to high spectral resolving power
Building on the experience of the high-resolution community with the suite of VLT high-resolution spectrographs, which has been tremendously successful, we outline here the (science) case for a high-fidelity, high-resolution spectrograph with wide wa
The Mid-infrared ELT Imager and Spectrograph (METIS) will provide the Extremely Large Telescope (ELT) with a unique window to the thermal- and mid-infrared (3 - 13 microns). Its single-conjugate adaptive optics (SCAO) system will enable high contrast
Simulations of frames from existing and upcoming high-resolution spectrographs, targeted for high accuracy radial velocity measurements, are computationally demanding (both in time and space). We present in this paper an innovative approach based on