ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of stellar multiplicity on protoplanetary discs. A NIR survey of the Lupus star forming region

100   0   0.0 ( 0 )
 نشر من قبل Alice Zurlo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from a near-infrared (NIR) adaptive optics (AO) survey of pre-main-sequence stars in the Lupus Molecular Cloud with VLT/NACO to identify (sub)stellar companions down to $sim$20 au separation and investigate the effects of multiplicity on circumstellar disc properties. We observe for the first time in the NIR with AO a total of 47 targets and complement our observations with archival data for another 58 objects previously observed with the same instrument. All 105 targets have millimetre ALMA data available, which provide constraints on disc masses and sizes. We identify a total of 13 multiple systems, including 11 doubles and 2 triples. In agreement with previous studies, we find that the most massive (M$_{rm dust}$ $>$ 50 M$_{oplus}$) and largest ($R_{rm dust}>$ 70 au) discs are only seen around stars lacking visual companions (with separations of 20-4800 au) and that primaries tend to host more massive discs than secondaries. However, as recently shown in a very similar study of $>$200 PMS stars in the Ophiuchus Molecular Cloud, the distribution of disc masses and sizes are similar for single and multiple systems for M$_{rm dust} < 50$ M$_{oplus}$ and radii $R_{rm dust}<$ 70 au. Such discs correspond to $sim $80-90% of the sample. This result can be seen in the combined sample of Lupus and Ophiuchus objects, which now includes more than 300 targets with ALMA imaging and NIR AO data, and implies that stellar companions with separations $>$20 au mostly affect discs in the upper 10$%$ of the disc mass and size distributions.

قيم البحث

اقرأ أيضاً

We present the first ALMA survey of protoplanetary discs at 3 mm, targeting 36 young stellar objects in the Lupus star-forming region with deep observations (sensitivity 20-50 microJy/beam) at ~0.35 resolution (~50 au). Building on previous ALMA surv eys at 0.89 and 1.3 mm that observed the complete sample of Class II discs in Lupus at a comparable resolution, we aim to assess the level of grain growth in the relatively young Lupus region. We measure 3 mm integrated fluxes, from which we derive disc-averaged 1-3 mm spectral indices. We find that the mean spectral index of the observed Lupus discs is $alpha_mathrm{1-3 mm}=2.23pm0.06$, in all cases $alpha_mathrm{1-3 mm}<3.0$, with a tendency for larger spectral indices in the brightest discs and in transition discs. Furthermore, we find that the distribution of spectral indices in Lupus discs is statistically indistinguishable from that of the Taurus and Ophiuchus star-forming regions. Assuming the emission is optically thin, the low values $alpha_mathrm{1-3 mm}leq 2.5$ measured for most discs can be interpreted with the presence of grains larger than 1 mm. The observations of the faint discs in the sample can be explained without invoking the presence of large grains, namely through a mixture of optically thin and optically thick emission from small grains. However, the bright (and typically large) discs do inescapably require the presence of millimeter-sized grains in order to have realistic masses. Based on a disc mass argument, our results challenge previous claims that the presence of optically thick sub-structures may be a universal explanation for the empirical millimeter size-luminosity correlation observed at 0.89 mm.
72 - E. Sanchis , L. Testi , A. Natta 2021
We perform a comprehensive demographic study of the CO extent relative to dust of the disk population in the Lupus clouds, in order to find indications of dust evolution and possible correlations with other properties. We increase up to 42 the number of disks of the region with measured CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$) from observations with the Atacama Large Millimeter/submillimeter Array (ALMA). The sizes are obtained from modeling the ${^{12}}$CO $J = 2-1$ line emission and continuum emission at $sim 0.89$ mm with an empirical function (Nuker profile or Gaussian function). The CO emission is more extended than the dust continuum, with a $R_{68%}^{mathrm{CO}}$/$R_{68%}^{mathrm{dust}}$ median value of 2.5, for the entire population and for a sub-sample with high completeness. 6 disks, around $15%$ of the Lupus disk population have a size ratio above 4. Based on thermo-chemical modeling, this value can only be explained if the disk has undergone grain growth and radial drift. These disks do not have unusual properties in terms of stellar mass ($M_{star}$), disk mass ($M_{mathrm{disk}}$), CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$), and mass accretion. We search for correlations between the size ratio and $M_{star}$, $M_{mathrm{disk}}$, $R_{mathrm{CO}}$ and $R_{mathrm{dust}}$: only a weak monotonic anti-correlation with the $R_{mathrm{dust}}$ is found. The lack of strong correlations is remarkable and suggests that the bulk of the population may be in a similar evolutionary stage, independent of the stellar and disk properties. These results should be further investigated, since the optical depth difference between CO and dust continuum may play a role in the inferred size ratios. Lastly, the CO emission for the majority of the disks is consistent with optically thick emission and an average CO temperature of around 30 K.
The Cepheus B (CepB) molecular cloud and a portion of the nearby CepOB3b OB association, one of the most active regions of star formation within 1 kpc, have been observed with the IRAC detector on board the Spitzer Space Telescope. The goals are to s tudy protoplanetary disk evolution and processes of sequential triggered star formation in the region. Out of ~400 pre-main sequence (PMS) stars selected with an earlier Chandra X-ray Observatory observation, 95% are identified with mid-infrared sources and most of these are classified as diskless or disk-bearing stars. The discovery of the additional >200 IR-excess low-mass members gives a combined Chandra+Spitzer PMS sample complete down to 0.5 Mo outside of the cloud, and somewhat above 1 Mo in the cloud. Analyses of the nearly disk-unbiased combined Chandra+Spitzer selected stellar sample give several results. Our major finding is a spatio-temporal gradient of young stars from the hot molecular core towards the primary ionizing O star HD 217086. This strongly supports the radiation driven implosion (RDI) model of triggered star formation in the region. The empirical estimate for the shock velocity of 1 km/s is very similar to theoretical models of RDI in shocked molecular clouds...ABRIDGED... Other results include: 1. agreement of the disk fractions, their mass dependency, and fractions of transition disks with other clusters; 2. confirmation of the youthfulness of the embedded CepB cluster; 3. confirmation of the effect of suppression of time-integrated X-ray emission in disk-bearing versus diskless systems.
Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities hinting at recently formed, giant planets. However, many of these studies are biased towards the brightest disks in the nearby star forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (>20 AU radius) from a complete disk survey of the Lupus star forming region, using ALMA Band 7 observations at 0.3 (22-30 AU radius) resolution of the 345 GHz continuum, 13CO and C18O 3-2 observations and the Spectral Energy Distribution of each source. Gas and dust surface density profiles are derived using the physical-chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star forming region. The dust cavity sizes range from 20-90 AU radius and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ~11%, which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.
Circumstellar discs are the precursors of planetary systems and develop shortly after their host star has formed. In their early stages these discs are immersed in an environment rich in gas and neighbouring stars, which can be hostile for their surv ival. There are several environmental processes that affect the evolution of circumstellar discs, and external photoevaporation is arguably one of the most important ones. Theoretical and observational evidence point to circumstellar discs losing mass quickly when in the vicinity of massive, bright stars. In this work we simulate circumstellar discs in clustered environments in a range of stellar densities, where the photoevaporation mass-loss process is resolved simultaneously with the stellar dynamics, stellar evolution, and the viscous evolution of the discs. Our results indicate that external photoevaporation is efficient in depleting disc masses and that the degree of its effect is related to stellar density. We find that a local stellar density lower than 100 stars pc$^{-2}$ is necessary for discs massive enough to form planets to survive for SI{2.0}{Myr}. There is an order of magnitude difference in the disc masses in regions of projected density 100 stars pc$^{-2}$ versus $10^4$ stars pc$^{-2}$. We compare our results to observations of the Lupus clouds, the Orion Nebula Cluster, the Orion Molecular Cloud-2, Taurus, and NGC 2024, and find that the trends observed between region density and disc masses are similar to those in our simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا