ترغب بنشر مسار تعليمي؟ اضغط هنا

Lucky spectroscopy, an equivalent technique to Lucky Imaging: II. Spatially-resolved intermediate-resolution blue-violet spectroscopy of 19 close massive binaries using the William Herschel Telescope

276   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Ma\\'iz Apell\\'aniz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CONTEXT. Many massive stars have nearby companions whose presence hamper their characterization through spectroscopy. AIMS. We want to continue obtaining spatially resolved spectroscopy of close massive visual binaries to derive their spectral types. METHODS. We have used lucky spectroscopy to obtain many short long-slit spectroscopic exposures of 19 close visual binaries under good seeing conditions. We selected those with the best characteristics, extracted the spectra using multiple-profile fitting, and combined the results to derive spatially separated spectra. The results are analyzed in combination with data from lucky imaging, regular intermediate-resolution single-order spectroscopy, and echelle high-resolution spectroscopy. RESULTS. The new application of lucky spectroscopy has allowed us to [a] spatially disentangle for the first time two O stars (FN CMa B and 6 Cas B) with brighter BA supergiant companions; [b] determine that two B stars (alpha Sco B and HD 164492 B) with close and more massive companions are fast rotators; [c] extend the technique to cases with extreme magnitude differences, shorter separations, and fainter primary magnitudes down to B=11; [d] spatially disentangle the spectra of stars with companions as diverse as an A supergiant (6 Cas A), a WR star (WR 157), and an M supergiant (alpha Sco A); [e] discover the unexpected identity of some targets such as two previously unknown bright O stars (HD 51756 B and BD +60 544) and a new member of the rare OC category (HD 8768 A); and [f] identify and classify which of the components of four visual binaries is a double-lined spectroscopic binary and for another seven systems detect signs of spectroscopic binarity using high-spectral-resolution spectroscopy. We also present a determination of the limits of the technique. [ABRIDGED]



قيم البحث

اقرأ أيضاً

CONTEXT: Many massive stars have nearby companions whose presence hamper their characterization through spectroscopy. AIMS: We want to obtain spatially resolved spectroscopy of close massive visual binaries to derive their spectral types. METHODS: We obtain a large number of short long-slit spectroscopic exposures of five close binaries under good seeing conditions, select those with the best characteristics, extract the spectra using multiple-profile fitting, and combine the results to derive spatially separated spectra. RESULTS: We demonstrate the usefulness of Lucky Spectroscopy by presenting the spatially resolved spectra of the components of each system, in two cases with separations of only ~0.3. Those are delta Ori Aa+Ab (resolved in the optical for the first time) and sigma Ori AaAb+B (first time ever resolved). We also spatially resolve 15 Mon AaAb+B, zeta Ori AaAb+B (both previously resolved with GOSSS, the Galactic O-Star Spectroscopic Survey), and eta Ori AaAb+B, a system with two spectroscopic B+B binaries and a fifth visual component. The systems have in common that they are composed of an inner pair of slow rotators orbited by one or more fast rotators, a characteristic that could have consequences for the theories of massive star formation.
We present relative positions of visual binaries observed during 2009 with the FastCam lucky-imaging camera at the 1.5-m Carlos Sanchez Telescope (TCS) at the Observatorio del Teide. We obtained 424 CCD observations (averaged in 198 mean relative pos itions) of 157 binaries with angular separations in the range 0.14-15.40, with a median separation of 0.51. For a given system, each CCD image represents the sum of the best 10-25% images from 1000-5000 short-exposure frames. Derived internal errors were 7 mas in r and 1.2^{circ} (9 mas) in q. When comparing to systems with very well-known orbits, we find that the rms deviation in r residuals is 23 mas, while the rms deviation in q residuals is 0.73 deg/r. We confirmed 18 Hipparcos binaries and we report new companions to BVD 36 A and J 621 B. For binaries with preliminary orbital parameters, the relative radial velocity was estimated as well. We also present four new revised orbits computed for LDS 873, BU 627 A-BC, BU 628 and HO 197 AB. This work is the first results on visual binaries using the FastCam lucky-imaging camera.
The vast majority of extrasolar planets are detected by indirect detection methods such as transit monitoring and radial velocity measurements. While these methods are very successful in detecting short-periodic planets, they are mostly blind to wide sub-stellar or even stellar companions on long orbits. In our study we present high resolution imaging observations of 63 exoplanet hosts carried out with the lucky imaging instrument AstraLux at the Calar Alto 2.2m telescope as well as with the new SPHERE high resolution adaptive optics imager at the ESO/VLT in the case of a known companion of specific interest. Our goal is to study the influence of stellar multiplicity on the planet formation process. We detected and confirmed 4 previously unknown stellar companions to the exoplanet hosts HD197037, HD217786, Kepler-21 and Kepler-68. In addition, we detected 11 new low-mass stellar companion candidates which must still be confirmed as bound companions. We also provide new astrometric and photometric data points for the recently discovered very close binary systems WASP-76 and HD2638. Furthermore, we show for the first time that the previously detected stellar companion to the HD185269 system is a very low mass binary. Finally we provide precise constraints on additional companions for all observed stars in our sample.
116 - N. Lodieu IAC 2009
The knowledge of the binary properties of metal-poor and solar-metallicity stars can shed light on the potential differences between the formation processes responsible for both types of objects. The aim of the project is to determine the binary pr operties (separation, mass ratio, frequency of companions) for M subdwarfs, the low-metallicity counterparts of field M dwarfs, and investigate any potential differences between both populations. We have obtained high-resolution imaging in the optical for a sample of 24 early-M subdwarfs and nine extreme subdwarfs with the ``Lucky Imaging technique using the AstraLux instrument on the Calar Alto 2.2-m telescope. We are sensitive to companions at separations larger than 0.1 arcsec and differences of ~2 magnitudes at 0.1 arcsec and ~5 mag at 1 arcsec. We have found no companion around the 24 subdwarfs under study and one close binary out of nine extreme subdwarfs. A second image of LHS 182 taken three months later with the same instrument confirms the common proper motion of the binary separated by about 0.7 arcsec. Moreover, we do not confirm the common proper motion of the faint source reported by Riaz and collaborators at ~2 arcsec from LHS 1074. We derive a binary frequency of 3+/-3% for M subdwarfs from our sample of 33 objects for separations larger than about five astronomical units. Adding to our sample the additional 28 metal-poor early-M dwarfs observed with the Hubble Space Telescope by Riaz and collaborators, we infer a binary fraction of 3.7+/-2.6% (with a 1 sigma confidence limit), significantly lower than the fraction of resolved binary M dwarfs (~20%) over the same mass and separation ranges (abridged).
AstraLux is a Lucky Imaging camera for the Calar Alto 2.2-m telescope, based on an electron-multiplying high speed CCD. By selecting only the best 1-10% of several thousand short exposure frames, AstraLux provides nearly diffraction limited imaging c apabilities in the SDSS i and z filters over a field of view of 24x24 arcseconds. By choosing commercially available components wherever possible, the instrument could be built in short time and at comparably low cost. We briefly present the instrument design, the data reduction pipeline, and summarise the performance and characteristics
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا