ﻻ يوجد ملخص باللغة العربية
We propose a comprehensive framework able to address both the predictability of the first and of the second kind for high-dimensional chaotic models. For this purpose, we analyse the properties of a newly introduced multistable climate toy model constructed by coupling the Lorenz 96 model with a zero-dimensional energy balance model. First, the attractors of the system are identified with Monte Carlo Basin Bifurcation Analysis. Additionally, we are able to detect the Melancholia state separating the two attractors. Then, Neural Ordinary Differential Equations are applied in order to predict the future state of the system in both of the identified attractors.
Data assimilation (DA) aims at optimally merging observational data and model outputs to create a coherent statistical and dynamical picture of the system under investigation. Indeed, DA aims at minimizing the effect of observational and model error,
The many ways in which machine and deep learning are transforming the analysis and simulation of data in particle physics are reviewed. The main methods based on boosted decision trees and various types of neural networks are introduced, and cutting-
New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine learning algorithms i
In statistical data assimilation (SDA) and supervised machine learning (ML), we wish to transfer information from observations to a model of the processes underlying those observations. For SDA, the model consists of a set of differential equations t
texttt{GooStats} is a software framework that provides a flexible environment and common tools to implement multi-variate statistical analysis. The framework is built upon the texttt{CERN ROOT}, texttt{MINUIT} and texttt{GooFit} packages. Running a m