ﻻ يوجد ملخص باللغة العربية
We measure the spin-charge interconversion by the spin Hall effect in ferromagnetic/Pt nanodevices. The extracted effective spin Hall angles (SHAs) of Pt evolve drastically with the ferromagnetic (FM) materials (CoFe, Co, and NiFe), when assuming transparent interfaces and a bulk origin of the spin injection/detection by the FM elements. By carefully measuring the interface resistance, we show that it is quite large and cannot be neglected. We then evidence that the spin injection/detection at the FM/Pt interfaces are dominated by the spin polarization of the interfaces. We show that interfacial asymmetric spin scattering becomes the driving mechanism of the spin injection in our samples.
Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM) and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large number of spintronic experiments. Howe
Spin currents can modify the magnetic state of ferromagnetic ultrathin films through spin-orbit torque. They may be generated by means of spin-orbit interaction by either bulk or interfacial phenomena. Electrical transport measurements reveal a six-f
Spin transmission at ferromagnet/heavy metal interfaces is of vital importance for many spintronic devices. Usually the spin current transmission is limited by the spin mixing conductance and loss mechanisms such as spin memory loss. In order to unde
We report magnetoresistance measurements on thin Pt bars grown on epitaxial (001) and (111) CoFe2O4 (CFO) ferrimagnetic insulating films. The results can be described in terms of the recently discovered spin Hall magnetoresistance (SMR). The magnitud
We experimentally show evidence for the presence of spin accumulation in localized states at ferromagnet-silicon interfaces, detected by electrical Hanle effect measurements in CoFe/$n^{+}$-Si/$n$-Si lateral devices. By controlling the measurement te