ﻻ يوجد ملخص باللغة العربية
We present a general framework for uncertainty quantification that is a mosaic of interconnected models. We define global first and second order structural and correlative sensitivity analyses for random counting measures acting on risk functionals of input-output maps. These are the ANOVA decomposition of the intensity measure and the decomposition of the random measure variance, each into subspaces. Orthogonal random measures furnish sensitivity distributions. We show that the random counting measure may be used to construct positive random fields, which admit decompositions of covariance and sensitivity indices and may be used to represent interacting particle systems. The first and second order global sensitivity analyses conveyed through random counting measures elucidate and integrate different notions of uncertainty quantification, and the global sensitivity analysis of random fields conveys the proportionate functional contributions to covariance. This framework complements others when used in conjunction with for instance algorithmic uncertainty and model selection uncertainty frameworks.
The tube method or the volume-of-tube method approximates the tail probability of the maximum of a smooth Gaussian random field with zero mean and unit variance. This method evaluates the volume of a spherical tube about the index set, and then trans
Rare events, and more general risk-sensitive quantities-of-interest (QoIs), are significantly impacted by uncertainty in the tail behavior of a distribution. Uncertainty in the tail can take many different forms, each of which leads to a particular a
Information-theory based variational principles have proven effective at providing scalable uncertainty quantification (i.e. robustness) bounds for quantities of interest in the presence of nonparametric model-form uncertainty. In this work, we combi
We study derangements of ${1,2,ldots,n}$ under the Ewens distribution with parameter $theta$. We give the moments and marginal distributions of the cycle counts, the number of cycles, and asymptotic distributions for large $n$. We develop a ${0,1}$-v
We consider Gaussian measures $mu, tilde{mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2beta}$ resp. $tilde{A}^{-2tilde{beta}}$, and derive necessary and sufficient conditions on $A, tilde{A}$ and $beta, tilde{bet