ﻻ يوجد ملخص باللغة العربية
Existing SAR tomography (TomoSAR) algorithms are mostly based on an inversion of the SAR imaging model, which are often computationally expensive. Previous study showed perspective of using data-driven methods like KPCA to decompose the signal and reduce the computational complexity. This paper gives a preliminary demonstration of a new data-driven method based on sparse Bayesian learning. Experiments on simulated data show that the proposed method significantly outperforms KPCA methods in estimating the steering vectors of the scatterers. This gives a perspective of data-drive approach or combining it with model-driven approach for high precision tomographic inversion of large areas.
Sparse Bayesian learning (SBL) is a powerful framework for tackling the sparse coding problem while also providing uncertainty quantification. However, the most popular inference algorithms for SBL become too expensive for high-dimensional problems d
This study addresses the problem of discrete signal reconstruction from the perspective of sparse Bayesian learning (SBL). Generally, it is intractable to perform the Bayesian inference with the ideal discretization prior under the SBL framework. To
Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it does not work well for a generic measurement matrix, which may cause AMP to diverge. Damped AMP has been used
Layover separation has been fundamental to many synthetic aperture radar applications, such as building reconstruction and biomass estimation. Retrieving the scattering profile along the mixed dimension (elevation) is typically solved by inversion of
This paper is about variable selection, clustering and estimation in an unsupervised high-dimensional setting. Our approach is based on fitting constrained Gaussian mixture models, where we learn the number of clusters $K$ and the set of relevant var