ﻻ يوجد ملخص باللغة العربية
Lins theorem states that for all $epsilon > 0$, there is a $delta > 0$ such that for all $n geq 1$ if self-adjoint contractions $A,B in M_n(mathbb{C})$ satisfy $|[A,B]|leq delta$ then there are self-adjoint contractions $A,B in M_n(mathbb{C})$ with $[A,B]=0$ and $|A-A|,|B-B|<epsilon$. We present full details of the approach in arXiv:0808.2474, which seemingly is the closest result to a general constructive proof of Lins theorem. Constructive results for some special cases are presented along with applications to the problem of almost commuting matrices where $B$ is assumed to be normal and also to macroscopic observables.
Yuan and Leng (2007) gave a generalization of Ky Fans determinantal inequality, which is a celebrated refinement of the fundamental Brunn-Minkowski inequality $(det (A+B))^{1/n} ge (det A)^{1/n} +(det B)^{1/n}$, where $A$ and $B$ are positive semidef
Let $A = (a_{j,k})_{j,k=-infty}^infty$ be a bounded linear operator on $l^2(mathbb{Z})$ whose diagonals $D_n(A) = (a_{j,j-n})_{j=-infty}^inftyin l^infty(mathbb{Z})$ are almost periodic sequences. For certain classes of such operators and under certai
Famous Naimark-Han-Larson dilation theorem for frames in Hilbert spaces states that every frame for a separable Hilbert space $mathcal{H}$ is image of a Riesz basis under an orthogonal projection from a separable Hilbert space $mathcal{H}_1$ which co
We show that Liebs concavity theorem holds more generally for any unitarily invariant matrix function $phi:mathbf{H}^n_+rightarrow mathbb{R}$ that is monotone and concave. Concretely, we prove the joint concavity of the function $(A,B) mapstophibig[(