ﻻ يوجد ملخص باللغة العربية
Extrasolar planets with sizes between that of the Earth and Neptune ($R_{rm p}=1{-}4~{rm R}_oplus$) have a bimodal radius distribution. This planet radius valley separates compact, rocky super-Earths ($R_{rm p}=1.0{-}1.8~{rm R}_oplus$) from larger sub-Neptunes ($R_{rm p}=1.8{-}3.5~{rm R}_oplus$) hosting a gaseous hydrogen-helium envelope around their rocky core. Various hypotheses for this radius valley have been put forward, which all rely on physics internal to the planetary system: photoevaporation by the host star, long-term mass loss driven by the cooling planetary core, or the transition between two fundamentally different planet formation modes as gas is lost from the protoplanetary disc. Here we report the discovery that the planet radius distribution exhibits a strong dependence on ambient stellar clustering, characterised by measuring the position-velocity phase space density with textit{Gaia}. When dividing the planet sample into field and overdensity sub-samples, we find that planetary systems in the field exhibit a statistically significant ($p=5.5times10^{-3}$) dearth of planets below the radius valley compared to systems in phase space overdensities. This implies that the large-scale stellar environment of a planetary system is a key factor setting the planet radius distribution. We discuss how models for the radius valley might be revised following our findings and conclude that a multi-scale, multi-physics scenario is needed, connecting planet formation and evolution, star and stellar cluster formation, and galaxy evolution.
Studies of exoplanet demographics require large samples and precise constraints on exoplanet host stars. Using the homogeneous Kepler stellar properties derived using Gaia Data Release 2 by Berger et al. (2020), we re-compute Kepler planet radii and
The observed radii distribution of {it Kepler} exoplanets reveals two distinct populations: those that are more likely to be terrestrials ($lesssim1.7R_oplus$) and those that are more likely to be gas-enveloped ($gtrsim2R_oplus$). There exists a clea
The majority of exoplanets found to date have been discovered via the transit method, and transmission spectroscopy represents the primary method of studying these distant worlds. Currently, in-depth atmospheric characterization of transiting exoplan
A recent study suggests that the observed multiplicity of super-Earth (SE) systems is correlated with stellar clustering: stars in high phase-space density environments have an excess of single-planet systems compared to stars in low density fields.
Planet formation is generally described in terms of a system containing the host star and a protoplanetary disc, of which the internal properties (e.g. mass and metallicity) determine the properties of the resulting planetary system. However, (proto)