ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit-enhanced magnetic surface second-harmonic generation in Sr$_2$IrO$_4$

130   0   0.0 ( 0 )
 نشر من قبل David Hsieh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An anomalous optical second-harmonic generation (SHG) signal was previously reported in Sr$_2$IrO$_4$ and attributed to a hidden odd-parity bulk magnetic state. Here we investigate the origin of this SHG signal using a combination of bulk magnetic susceptibility, magnetic-field-dependent SHG rotational anisotropy, and overlapping wide-field SHG imaging and atomic force microscopy measurements. We find that the anomalous SHG signal exhibits a two-fold rotational symmetry as a function of in-plane magnetic field orientation that is associated with a crystallographic distortion. We also show a change in SHG signal across step edges that tracks the bulk antiferromagnetic stacking pattern. While we do not rule out the existence of hidden order in Sr$_2$IrO$_4$, our results altogether show that the anomalous SHG signal in parent Sr$_2$IrO$_4$ originates instead from a surface-magnetization-induced electric-dipole process that is enhanced by strong spin-orbit coupling.



قيم البحث

اقرأ أيضاً

In the context of correlated insulators, where electron-electron interactions (U) drive the localization of charge carriers, the metal-insulator transition (MIT) is described as either bandwidth (BC) or filling (FC) controlled. Motivated by the chall enge of the insulating phase in Sr$_2$IrO$_4$, a new class of correlated insulators has been proposed, in which spin-orbit coupling (SOC) is believed to renormalize the bandwidth of the half-filled $j_{mathrm{eff}} = 1/2$ doublet, allowing a modest U to induce a charge-localized phase. Although this framework has been tacitly assumed, a thorough characterization of the ground state has been elusive. Furthermore, direct evidence for the role of SOC in stabilizing the insulating state has not been established, since previous attempts at revealing the role of SOC have been hindered by concurrently occurring changes to the filling. We overcome this challenge by employing multiple substituents that introduce well defined changes to the signatures of SOC and carrier concentration in the electronic structure, as well as a new methodology that allows us to monitor SOC directly. Specifically, we study Sr$_2$Ir$_{1-x}$T$_x$O$_4$ (T = Ru, Rh) by angle-resolved photoemission spectroscopy (ARPES), combined with ab-initio and supercell tight-binding calculations. This allows us to distinguish relativistic and filling effects, thereby establishing conclusively the central role of SOC in stabilizing the insulating state of Sr$_2$IrO$_4$. Most importantly, we estimate the critical value for spin-orbit coupling in this system to be $lambda_c = 0.42 pm 0.01$ eV, and provide the first demonstration of a spin-orbit-controlled MIT.
We show that, contrary to previous belief, the transition to the antiferromagnetic state of Sr$_2$IrO$_4$ in zero magnetic field does show up in the transverse resistivity. We attribute this to a change in transverse integrals associated to the magne tic ordering, which is evaluated considering hopping of the localized charge. The evolution of the resistivity anomaly associated to the magnetic transition under applied magnetic field is studied. It tracks the magnetic phase diagram, allowing to identify three different lines, notably the spin-flip line, associated with the reordering of the ferromagnetic component of the magnetization, and an intriguing line for field induced magnetism, also corroborated by magnetization measurements.
{it Ab initio} analyses of A$_2$IrO$_4$ (A=Sr, Ba) are presented. Effective Hubbard-type models for Ir 5$d$ $t_{2g}$ manifolds downfolded from the global band structure are solved based on the dynamical mean-field theory. The results for A=Sr and Ba correctly reproduce paramagnetic metals undergoing continuous transitions to insulators below the Neel temperature $T_N$. These compounds are classified not into Mott insulators but into Slater insulators. However, the insulating gap opens by a synergy of the Neel order and significant band renormalization, which is also manifested by a 2D bad metallic behavior in the paramagnetic phase near the quantum criticality.
231 - S. Bahr , A. Alfonsov , G. Jackeli 2013
We report a high-field electron spin resonance study in the sub-THz frequency domain of a single crystal of Sr$_2$IrO$_4$ that has been recently proposed as a prototypical spin-orbital Mott insulator. In the antiferromagnetically (AFM) ordered state with noncollinear spin structure that occurs in this material at $T_{rm N} approx 240$ K we observe both the low frequency mode due to the precession of weak ferromagnetic moments arising from a spin canting, and the high frequency modes due to the precession of the AFM sublattices. Surprisingly, the energy gap for the AFM excitations appears to be very small, amounting to 0.83 meV only. This suggests a rather isotropic Heisenberg dynamics of interacting Ir$^{4+}$ effective spins despite the spin-orbital entanglement in the ground state.
We report a global structural distortion in Sr$_2$IrO$_4$ using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an $I4_{1}/acd$ to $I4_{1}/a$ space group is observed both ab ove and below the N{e}el temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective super-exchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large non-cubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magneto-elastic locking in Sr$_2$IrO$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا