ترغب بنشر مسار تعليمي؟ اضغط هنا

The Field Substellar Mass Function Based on the Full-sky 20-pc Census of 525 L, T, and Y Dwarfs

292   0   0.0 ( 0 )
 نشر من قبل J. Davy Kirkpatrick
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present final Spitzer trigonometric parallaxes for 361 L, T, and Y dwarfs. We combine these with prior studies to build a list of 525 known L, T, and Y dwarfs within 20 pc of the Sun, 38 of which are presented here for the first time. Using published photometry and spectroscopy as well as our own follow-up, we present an array of color-magnitude and color-color diagrams to further characterize census members, and we provide polynomial fits to the bulk trends. Using these characterizations, we assign each object a $T_{rm eff}$ value and judge sample completeness over bins of $T_{rm eff}$ and spectral type. Except for types $ge$ T8 and $T_{rm eff} <$ 600K, our census is statistically complete to the 20-pc limit. We compare our measured space densities to simulated density distributions and find that the best fit is a power law ($dN/dM propto M^{-alpha}$) with $alpha = 0.6{pm}0.1$. We find that the evolutionary models of Saumon & Marley correctly predict the observed magnitude of the space density spike seen at 1200K $< T_{rm eff} <$ 1350K, believed to be caused by an increase in the cooling timescale across the L/T transition. Defining the low-mass terminus using this sample requires a more statistically robust and complete sample of dwarfs $ge$Y0.5 and with $T_{rm eff} <$ 400K. We conclude that such frigid objects must exist in substantial numbers, despite the fact that few have so far been identified, and we discuss possible reasons why they have largely eluded detection.



قيم البحث

اقرأ أيضاً

We present preliminary trigonometric parallaxes of 184 late-T and Y dwarfs using observations from Spitzer (143), USNO (18), NTT (14), and UKIRT (9). To complete the 20-pc census of $ge$T6 dwarfs, we combine these measurements with previously publish ed trigonometric parallaxes for an additional 44 objects and spectrophotometric distance estimates for another 7. For these 235 objects, we estimate temperatures, sift into five 150K-wide $T_{rm eff}$ bins covering the range 300-1050K, determine the completeness limit for each, and compute space densities. To anchor the high-mass end of the brown dwarf mass spectrum, we compile a list of early- to mid-L dwarfs within 20 pc. We run simulations using various functional forms of the mass function passed through two different sets of evolutionary code to compute predicted distributions in $T_{rm eff}$. The best fit of these predictions to our L, T, and Y observations is a simple power-law model with $alpha approx 0.6$ (where $dN/dM propto M^{-alpha}$), meaning that the slope of the field substellar mass function is in rough agreement with that found for brown dwarfs in nearby star forming regions and young clusters. Furthermore, we find that publish
We discover four high proper motion L dwarfs by comparing the Wide-field Infrared Survey Explorer (WISE) to the Two Micron All Sky Survey (2MASS). WISE J140533.32+835030.5 is an L dwarf at the L/T transition with a proper motion of 0.85+/-0.02 yr^-1, previously overlooked due to its proximity to a bright star (V=12 mag). From optical spectroscopy we find a spectral type of L8, and from moderate-resolution J band spectroscopy we find a near-infrared spectral type of L9. We find WISE J140533.32+835030.5 to have a distance of 9.7+/-1.7 pc, bringing the number of L dwarfs at the L/T transition within 10 pc from six to seven. WISE J040137.21+284951.7, WISE J040418.01+412735.6, and WISE J062442.37+662625.6 are all early L dwarfs within 25 pc, and were classified using optical and low-resolution near-infrared spectra. WISE J040418.01+412735.6 is an L2 pec (red) dwarf, a member of the class of unusually red L dwarfs. We use follow-up optical and low-resolution near-infrared spectroscopy to classify a previously discovered (Castro & Gizis 2012) fifth object WISEP J060738.65+242953.4 as an (L8 Opt/L9 NIR), confirming it as an L dwarf at the L/T transition within 10 pc. WISEP J060738.65+242953.4 shows tentative CH_4 in the H band, possibly the result of unresolved binarity with an early T dwarf, a scenario not supported by binary spectral template fitting. If WISEP J060738.65+242953.4 is a single object, it represents the earliest onset of CH_4 in the H band of an L/T transition dwarf in the SpeX Library. As very late L dwarfs within 10 pc, WISE J140533.32+835030.5 and WISEP J060738.65+242953.4 will play a vital role in resolving outstanding issues at the L/T transition.
110 - Sayantan Auddy , Shantanu Basu , 2016
We present the current status of the analytic theory of brown dwarf evolution and the lower mass limit of the hydrogen burning main sequence stars. In the spirit of a simplified analytic theory we also introduce some modifications to the existing mod els. We give an exact expression for the pressure of an ideal non-relativistic Fermi gas at a finite temperature, therefore allowing for non-zero values of the degeneracy parameter ($psi = frac{kT}{mu_{F}}$, where $mu_{F}$ is the Fermi energy). We review the derivation of surface luminosity using an entropy matching condition and the first-order phase transition between the molecular hydrogen in the outer envelope and the partially-ionized hydrogen in the inner region. We also discuss the results of modern simulations of the plasma phase transition, which illustrate the uncertainties in determining its critical temperature. Based on the existing models and with some simple modification we find the maximum mass for a brown dwarf to be in the range $0.064M_odot-0.087M_odot$. An analytic formula for the luminosity evolution allows us to estimate the time period of the non-steady state (i.e., non-main sequence) nuclear burning for substellar objects. Standard models also predict that stars that are just above the substellar mass limit can reach an extremely low luminosity main sequence after at least a few million years of evolution, and sometimes much longer. We estimate that $simeq 11 %$ of stars take longer than $10^7$ yr to reach the main-sequence, and $simeq 5 %$ of stars take longer than $10^8$ yr.
416 - Aleks Scholz 2013
The abundance of brown dwarfs (BDs) in young clusters is a diagnostic of star formation theory. Here we revisit the issue of determining the substellar initial mass function (IMF), based on a comparison between NGC1333 and IC348, two clusters in the Perseus star-forming region. We derive their mass distributions for a range of model isochrones, varying distances, extinction laws and ages, with comprehensive assessments of the uncertainties. We find that the choice of isochrone and other parameters have significant effects on the results, thus we caution against comparing IMFs obtained using different approaches. For NGC1333, we find that the star/BD ratio R is between 1.9 and 2.4, for all plausible scenarios, consistent with our previous work. For IC348, R is between 2.9 and 4.0, suggesting that previous studies have overestimated this value. Thus, the star forming process generates about 2.5-5 substellar objects per 10 stars. The derived star/BD ratios correspond to a slope of the power-law mass function of alpha=0.7-1.0 for the 0.03-1.0Msol mass range. The median mass in these clusters - the typical stellar mass - is between 0.13-0.30Msol. Assuming that NGC1333 is at a shorter distance than IC348, we find a significant difference in the cumulative distribution of masses between the two clusters, resulting from an overabundance of very low mass objects in NGC1333. Gaia astrometry will constrain the cluster distances better and will lead to a more definitive conclusion. Furthermore, ratio R is somewhat larger in IC348 compared with NGC1333, although this difference is still within the margins of error. Our results indicate that environments with higher object density may produce a larger fraction of very low mass objects, in line with predictions for brown dwarf formation through gravitational fragmentation of filaments falling into a cluster potential.
The sample of white dwarfs included in the local 20 pc volume documents, fairly accurately, the total production of white dwarfs over roughly 10 Gyr of stellar evolution in this part of the Milky Way Galaxy. In this sample, we have been systematicall y searching for magnetic white dwarfs. Here we report the discovery of six new magnetic white dwarfs, with a field strength from a few MG to about 200MG. Two of these stars show H lines that are split and polarised by the magnetic field. One star shows extremely weak spectral lines in intensity, to which highly polarised narrow features correspond. The three other stars have featureless flux spectra, but show continuum polarisation. These new discoveries support the view that at least 20% of all white dwarfs in the local 20 pc volume have magnetic fields, and they fully confirm the suspicion that magnetism is a common rather than a rare characteristic of white dwarfs. We discuss the level and the handedness of the continuum polarisation in the presence of a magnetic field in cool white dwarfs. We suggest that a magnetic field with a 15 MG longitudinal component produces 1% of continuum circular polarisation. We have also shown that the problem of cross-talk from linear to circular polarisation of the FORS2 instrument, used in our survey, represents an obstacle to accurate measurements of the circular polarisation of faint white dwarfs when the background is illuminated, and polarised, by the moon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا