ﻻ يوجد ملخص باللغة العربية
We discuss the temperature-dependent thermoelectric transport properties of semiconductor nanostructures comprising a quantum dot coupled to quantum wires: the thermal dependence of the electrical conductance, thermal conductance, and thermopower. We explore the universality of the thermoelectric properties in the temperature range associated with the Kondo crossover. In this thermal range, general arguments indicate that any equilibrium propertys temperature dependence should be a universal function of the ratio $T^{*}=T/T_{K}$, where $T_{K}$ is the Kondo temperature. Considering the particle-hole symmetric, spin-degenerate Anderson model, the zero-bias electrical conductance has already been shown to map linearly onto a universal conductance through a quantum dot embedded or side-coupled to a quantum wire. Employing rigorous renormalization-group arguments, we calculate universal thermoelectric transport coefficients that allow us to extend this result to the thermopower and the thermal conductance. We present numerical renormalization-group results to illustrate the physics in our findings. Applying the universal thermoelectric coefficients to recent experimental results of the electrical conductance and thermo-voltages versus $V_{gate}$, at different temperatures in the Kondo regime, we calculate all the thermoelectric properties and obtain simple analytical fitting functions that can be used to predict the experimental results of these properties. However, we cannot check all of them, due to the lack of available experimental results over a broad temperature range.
We revisited the scaling behavior of the transport properties of a quantum dot system described by the spin-1/2 Anderson model using analytical methods. In the low temperature limit we show that the conductance has a universal behavior with universal
Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the th
We investigate the thermoelectric properties of a T-shaped double quantum dot system described by a generalized Anderson Hamiltonian. The systems electrical conduction (G) and the fundamental thermoelectric parameters such as the Seebeck coefficient
In this paper we compare Bose transport in normal phase atomic gases with its counterpart in Fermi gases, illustrating the non-universality of two dimensional bosonic transport associated with different dissipation mechanisms. Near the superfluid tra
This paper examines the thermoelectric response of a dissipative quantum dot heat engine based on the Anderson-Holstein model in two relevant operating limits: (i) when the dot phonon modes are out of equilibrium, and (ii) when the dot phonon modes a