ترغب بنشر مسار تعليمي؟ اضغط هنا

Interstellar anatomy of the TeV gamma-ray peak in the IC443 supernova remnant

91   0   0.0 ( 0 )
 نشر من قبل Pierre Dell'Ova
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supernovae remnants (SNRs) represent a major feedback source from stars on the interstellar medium of galaxies. During the latest stage of supernovae explosions, shock waves produced by the initial blast modify the chemistry of gas and dust, inject kinetic energy in the surroundings, and may alter star formation characteristics. Simultaneously, gamma-ray emission is generated by the interaction between the ambiant medium and the cosmic rays. We study the stellar and interstellar contents of IC443, an evolved shell type SNR at a distance of 1.9 kpc, with an estimated age of 30 kyr. We aim to measure the mass of the gas within the extended G region, which corresponds to the peak of gamma-ray emission detected by VERITAS and Fermi. We performed 10x10 mapped observations of 12CO and 13CO J=1-0, J=2-1 and J=3-2 pure rotational lines, as well as C18O J=1-0 and J=2-1 obtained with the IRAM-30m and APEX telescopes. We first compared our data with local thermodynamic equilbrium (LTE) models. We estimated the optical depth of each line from the emission of the isotopologues 13CO and C18O. We used the population diagram and large velocity gradient (LVG) assumption to measure the column density, mass, and kinetic temperature of the gas using 12CO and 13CO lines. We used complementary data (stars, gas, and dust at multiple wavelengths) and infrared point source catalogues to search for protostar candidates. Our results emphasize how the mass associated with the ring-like structure and the cloudlet cannot be overlooked when quantifying the interaction of cosmic rays with the dense local medium. Additionally, the presence of numerous possible protostars in the region might represent a fresh source of CR, which must also be taken into account in the interpretation of gamma-ray observations in this region.



قيم البحث

اقرأ أيضاً

321 - Xiao Zhang 2012
Hadronic gamma-ray emission from supernova remnants (SNRs) is an important tool to test shock acceleration of cosmic ray protons. Tycho is one of nearly a dozen Galactic SNRs which are suggested to emit hadronic gamma-ray emission. Among them, howeve r, it is the only one in which the hadronic emission is proposed to arise from the interaction with low-density (~0.3 cm^{-3}) ambient medium. Here we present an alternative hadronic explanation with a modest conversion efficiency (of order 1%) for this young remnant. With such an efficiency, a normal electron-proton ratio (of order 10^{-2}) is derived from the radio and X-ray synchrotron spectra and an average ambient density that is at least one-order-of-magnitude higher is derived from the hadronic gamma-ray flux. This result is consistent with the multi-band evidence of the presence of dense medium from the north to the east of the Tycho SNR. The SNR-cloud association, in combination with the HI absorption data, helps to constrain the so-far controversial distance to Tycho and leads to an estimate of 2.5 kpc.
155 - V. A. Acciari , E. Aliu , T. Arlen 2011
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak e mission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.
157 - H. Sano , T. Fukuda , S. Yoshiike 2014
We have carried out a spectral analysis of the Suzaku X-ray data in the 0.4-12 keV range toward the shell-type very-high-energy {gamma}-ray supernova remnant RX J1713.7-3946. The aims of this analysis are to estimate detailed X-rays spectral properti es at a high angular resolution up to 2 arcmin, and to compare them with the interstellar gas. The X-ray spectrum is non-thermal and used to calculate absorbing column density, photon index, and absorption-corrected X-ray flux. The photon index varies significantly from 2.1 to 2.9. It is shown that the X-ray intensity is well correlated with the photon index, especially in the west region, with a correlation coefficient of 0.81. The X-ray intensity tends to increase with the averaged interstellar gas density while the dispersion is relatively large. The hardest spectra having the photon index less than 2.4 are found outside of the central 10 arcmin of the SNR, from the north to the southeast (~430 arcmin^2) and from the southwest to the northwest (~150 arcmin^2). The former region shows low interstellar gas density, while the latter high interstellar gas density. We present discussion for possible scenarios which explain the distribution of the photon index and its relationship with the interstellar gas.
We report the results of optical spectroscopy of the Small Magellanic Cloud supernova remnant (SNR) MCSNR J0127-7332 and the mass donor Be star, 2dFS 3831, in its associated high-mass X-ray binary SXP 1062 carried out with the Southern African Large Telescope (SALT). Using high-resolution long-slit spectra, we measured the expansion velocity of the SNR shell of approx 140 km/s, indicating that MCSNR J0127-7332 is in the radiative phase. We found that the observed line ratios in the SNR spectrum can be understood if the local interstellar medium is ionized by 2dFS 3831 and/or OB stars around the SNR. We propose that MCSNR J0127-7332 is the result of supernova explosion within a bubble produced by the stellar wind of the supernova progenitor and that the bubble was surrounded by a massive shell at the moment of supernova explosion. We estimated the age of MCSNR J0127-7332 to be la 10 000 yr. We found that the spectrum of 2dFS 3831 changes with orbital phase. Namely, the equivalent width of the Halpha emission line decreased by approx 40 per cent in approx 130 d after periastron passage of the neutron star and then almost returned to its original value in the next approx 100 d. Also, the spectrum of 2dFS 3831 obtained closest to the periastron epoch (about three weeks after the periastron) shows a noticeable emission line of He II lambda 4686, which disappeared in the next about two weeks. We interpret these changes as a result of the temporary perturbation and heating of the disk as the neutron star passes through it.
The results of follow-up observations of the TeV gamma-ray source HESSJ 1640-465 from 2004 to 2011 with the High Energy Stereoscopic System (H.E.S.S.) are reported in this work. The spectrum is well described by an exponential cut-off power law with photon index Gamma=2.11 +/- 0.09_stat +/- 0.10_sys, and a cut-off energy of E_c = (6.0 +2.0 -1.2) TeV. The TeV emission is significantly extended and overlaps with the north-western part of the shell of the SNR G338.3-0.0. The new H.E.S.S. results, a re-analysis of archival XMM-Newton data, and multi-wavelength observations suggest that a significant part of the gamma-ray emission from HESS J1640-465 originates in the SNR shell. In a hadronic scenario, as suggested by the smooth connection of the GeV and TeV spectra, the product of total proton energy and mean target density could be as high as W_p n_H ~ 4 x 10^52 (d/10kpc)^2 erg cm^-3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا