ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language Model

306   0   0.0 ( 0 )
 نشر من قبل Juntao Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements over various cross-lingual and low-resource tasks. Through training on one hundred languages and terabytes of texts, cross-lingual language models have proven to be effective in leveraging high-resource languages to enhance low-resource language processing and outperform monolingual models. In this paper, we further investigate the cross-lingual and cross-domain (CLCD) setting when a pretrained cross-lingual language model needs to adapt to new domains. Specifically, we propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features and domain-invariant features from the entangled pretrained cross-lingual representations, given unlabeled raw texts in the source language. Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts. Experimental results show that our proposed method achieves significant performance improvements over the state-of-the-art pretrained cross-lingual language model in the CLCD setting. The source code of this paper is publicly available at https://github.com/lijuntaopku/UFD.

قيم البحث

اقرأ أيضاً

We study the problem of multilingual masked language modeling, i.e. the training of a single model on concatenated text from multiple languages, and present a detailed study of several factors that influence why these models are so effective for cros s-lingual transfer. We show, contrary to what was previously hypothesized, that transfer is possible even when there is no shared vocabulary across the monolingual corpora and also when the text comes from very different domains. The only requirement is that there are some shared parameters in the top layers of the multi-lingual encoder. To better understand this result, we also show that representations from independently trained models in different languages can be aligned post-hoc quite effectively, strongly suggesting that, much like for non-contextual word embeddings, there are universal latent symmetries in the learned embedding spaces. For multilingual masked language modeling, these symmetries seem to be automatically discovered and aligned during the joint training process.
The notion of in-domain data in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.
This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selec tion method to extract in-domain sentences in the missing language side from a large generic monolingual corpus. Our proposed method trains an adaptive layer on top of multilingual BERT by contrastive learning to align the representation between the source and target language. This then enables the transferability of the domain classifier between the languages in a zero-shot manner. Once the in-domain data is detected by the classifier, the NMT model is then adapted to the new domain by jointly learning translation and domain discrimination tasks. We evaluate our cross-lingual data selection method on NMT across five diverse domains in three language pairs, as well as a real-world scenario of translation for COVID-19. The results show that our proposed method outperforms other selection baselines up to +1.5 BLEU score.
Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding. In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining. We propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI, our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation, we obtain 34.3 BLEU on WMT16 German-English, improving the previous state of the art by more than 9 BLEU. On supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT16 Romanian-English, outperforming the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available.
Cross-lingual adaptation with multilingual pre-trained language models (mPTLMs) mainly consists of two lines of works: zero-shot approach and translation-based approach, which have been studied extensively on the sequence-level tasks. We further veri fy the efficacy of these cross-lingual adaptation approaches by evaluating their performances on more fine-grained sequence tagging tasks. After re-examining their strengths and drawbacks, we propose a novel framework to consolidate the zero-shot approach and the translation-based approach for better adaptation performance. Instead of simply augmenting the source data with the machine-translated data, we tailor-make a warm-up mechanism to quickly update the mPTLMs with the gradients estimated on a few translated data. Then, the adaptation approach is applied to the refined parameters and the cross-lingual transfer is performed in a warm-start way. The experimental results on nine target languages demonstrate that our method is beneficial to the cross-lingual adaptation of various sequence tagging tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا