ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing incompatibility of quantum measurements via their Naimark extensions

118   0   0.0 ( 0 )
 نشر من قبل Arindam Mitra
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain a formal characterization of the compatibility or otherwise of a set of positive-operator-valued measures (POVMs) via their Naimark extensions. We show that a set of POVMs is jointly measurable if and only if there exists a single Naimark extension, specified by a fixed ancilla state on the same ancilla Hilbert space, that maps them to a set of commuting projective measurements (PVMs). We use our result to obtain an easily checkable sufficient condition for the compatibility of a pair of dichotomic observables in any dimension. This in turn leads to a characterization of the compatibility regions for some important classes of observables including a pair of unsharp qubit observables. Finally, we also outline as to how our result provides an alternate approach to quantifying the incompatibility of a general set of quantum measurements.



قيم البحث

اقرأ أيضاً

Incompatibility of quantum measurements is of fundamental importance in quantum mechanics. It is closely related to many nonclassical phenomena such as Bell nonlocality, quantum uncertainty relations, and quantum steering. We study the necessary and sufficient conditions of quantum compatibility for a given collection of $n$ measurements in $d$-dimensional space. From the compatibility criterion for two-qubit measurements, we compute the incompatibility probability of a pair of independent random measurements. For a pair of unbiased random qubit measurements, we derive that the incompatibility probability is exactly $frac35$. Detailed results are also presented in figures for pairs of general qubit measurements.
Given a quantum system on many qubits split into a few different parties, how much total correlations are there between these parties? Such a quantity -- aimed to measure the deviation of the global quantum state from an uncorrelated state with the s ame local statistics -- plays an important role in understanding multi-partite correlations within complex networks of quantum states. Yet, the experimental access of this quantity remains challenging as it tends to be non-linear, and hence often requires tomography which becomes quickly intractable as dimensions of relevant quantum systems scale. Here, we introduce a much more experimentally accessible quantifier of total correlations, which can be estimated using only single-qubit measurements. It requires far fewer measurements than state tomography, and obviates the need to coherently interfere multiple copies of a given state. Thus we provide a tool for proving multi-partite correlations that can be applied to near-term quantum devices.
One of the basic distinctions between classical and quantum mechanics is the existence of fundamentally incompatible quantities. Such quantities are present on all levels of quantum objects: states, measurements, quantum channels, and even higher ord er dynamics. In this manuscript, we show that two seemingly different aspects of quantum incompatibility: the quantum marginal problem of states and the incompatibility on the level of quantum channels are in many-to-one correspondence. Importantly, as incompatibility of measurements is a special case of the latter, it also forms an instance of the quantum marginal problem. The generality of the connection is harnessed by solving the marginal problem for Gaussian and Bell diagonal states, as well as for pure states under depolarizing noise. Furthermore, we derive entropic criteria for channel compatibility, and develop a converging hierarchy of semi-definite programs for quantifying the strength of quantum memories.
We consider the question of characterising the incompatibility of sets of high-dimensional quantum measurements. We introduce the concept of measurement incompatibility in subspaces. That is, starting from a set of measurements that is incompatible, one considers the set of measurements obtained by projection onto any strict subspace of fixed dimension. We identify three possible forms of incompatibility in subspaces: (i) incompressible incompatibility: measurements that become compatible in every subspace, (ii) fully compressible incompatibility: measurements that remain incompatible in every subspace, and (iii) partly compressible incompatibility: measurements that are compatible in some subspace and incompatible in another. For each class we discuss explicit examples. Finally, we present some applications of these ideas. First we show that joint measurability and coexistence are two inequivalent notions of incompatibility in the simplest case of qubit systems. Second we highlight the implications of our results for tests of quantum steering.
Quantum computers promise to solve certain problems more efficiently than their digital counterparts. A major challenge towards practically useful quantum computing is characterizing and reducing the various errors that accumulate during an algorithm running on large-scale processors. Current characterization techniques are unable to adequately account for the exponentially large set of potential errors, including cross-talk and other correlated noise sources. Here we develop cycle benchmarking, a rigorous and practically scalable protocol for characterizing local and global errors across multi-qubit quantum processors. We experimentally demonstrate its practicality by quantifying such errors in non-entangling and entangling operations on an ion-trap quantum computer with up to 10 qubits, with total process fidelities for multi-qubit entangling gates ranging from 99.6(1)% for 2 qubits to 86(2)% for 10 qubits. Furthermore, cycle benchmarking data validates that the error rate per single-qubit gate and per two-qubit coupling does not increase with increasing system size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا