ﻻ يوجد ملخص باللغة العربية
Combining lidar in camera-based simultaneous localization and mapping (SLAM) is an effective method in improving overall accuracy, especially at a large scale outdoor scenario. Recent development of low-cost lidars (e.g. Livox lidar) enable us to explore such SLAM systems with lower budget and higher performance. In this paper we propose CamVox by adapting Livox lidars into visual SLAM (ORB-SLAM2) by exploring the lidars unique features. Based on the non-repeating nature of Livox lidars, we propose an automatic lidar-camera calibration method that will work in uncontrolled scenes. The long depth detection range also benefit a more efficient mapping. Comparison of CamVox with visual SLAM (VINS-mono) and lidar SLAM (LOAM) are evaluated on the same dataset to demonstrate the performance. We open sourced our hardware, code and dataset on GitHub.
This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models. The first main novelty is a feature-based tightly-integrated
This article presents a new open-source C++ implementation to solve the SLAM problem, which is focused on genericity, versatility and high execution speed. It is based on an original object oriented architecture, that allows the combination of numero
Using different sensors in an autonomous vehicle (AV) can provide multiple constraints to optimize AV location estimation. In this paper, we present a low-cost GPS-assisted LiDAR state estimation system for AVs. Firstly, we utilize LiDAR to obtain hi
This paper proposes a 3D LiDAR SLAM algorithm named Ground-SLAM, which exploits grounds in structured multi-floor environments to compress the pose drift mainly caused by LiDAR measurement bias. Ground-SLAM is developed based on the well-known pose g
Light Detection and Ranging (LiDAR) based Simultaneous Localization and Mapping (SLAM) has drawn increasing interests in autonomous driving. However, LiDAR-SLAM suffers from accumulating errors which can be significantly mitigated by Global Navigatio