ترغب بنشر مسار تعليمي؟ اضغط هنا

Progress and Prospects in Weather and Climate Modelling

110   0   0.0 ( 0 )
 نشر من قبل Manmeet Singh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This popular article provides a short summary of the progress and prospects in Weather and Climate Modelling for the benefit of high school and undergraduate college students and early career researchers. Although this is not a comprehensive scientific article, the basic information provided here is intended to introduce students and researchers to the topic of Weather and Climate Modelling - which comes under the broad discipline of Atmospheric / Oceanic / Climate / Earth Sciences. This article briefly summarizes the historical developments, progress, scientific challenges in weather and climate modelling and career opportunities.



قيم البحث

اقرأ أيضاً

We apply an empirical, data-driven approach for describing crop yield as a function of monthly temperature and precipitation by employing generative probabilistic models with parameters determined through Bayesian inference. Our approach is applied t o state-scale maize yield and meteorological data for the US Corn Belt from 1981 to 2014 as an exemplar, but would be readily transferable to other crops, locations and spatial scales. Experimentation with a number of models shows that maize growth rates can be characterised by a two-dimensional Gaussian function of temperature and precipitation with monthly contributions accumulated over the growing period. This approach accounts for non-linear growth responses to the individual meteorological variables, and allows for interactions between them. Our models correctly identify that temperature and precipitation have the largest impact on yield in the six months prior to the harvest, in agreement with the typical growing season for US maize (April to September). Maximal growth rates occur for monthly mean temperature 18-19$^circ$C, corresponding to a daily maximum temperature of 24-25$^circ$C (in broad agreement with previous work) and monthly total precipitation 115 mm. Our approach also provides a self-consistent way of investigating climate change impacts on current US maize varieties in the absence of adaptation measures. Keeping precipitation and growing area fixed, a temperature increase of $2^circ$C, relative to 1981-2014, results in the mean yield decreasing by 8%, while the yield variance increases by a factor of around 3. We thus provide a flexible, data-driven framework for exploring the impacts of natural climate variability and climate change on globally significant crops based on their observed behaviour. In concert with other approaches, this can help inform the development of adaptation strategies that will ensure food security under a changing climate.
We construct and analyze climate networks based on daily satellite measurements of temperatures and geopotential heights. We show that these networks are stable during time and are similar over different altitudes. Each link in our network is stable with typical 15% variability. The entire hierarchy of links is about 80% consistent during time. We show that about half of this stability is due to the spatial 2D embedding of the network, and half is due to physical coupling mechanisms. The network stability of equatorial regions is found to be lower compared to the stability of a typical network in non-equatorial regions.
The statistical behavior of weather variables of Antofagasta is described, especially the daily data of air as temperature, pressure and relative humidity measured at 08:00, 14:00 and 20:00. In this article, we use a time series deseasonalization tec hnique, Q-Q plot, skewness, kurtosis and the Pearson correlation coefficient. We found that the distributions of the records are symmetrical and have positive kurtosis, so they have heavy tails. In addition, the variables are highly autocorrelated, extending up to one year in the case of pressure and temperature.
Modern weather and climate models share a common heritage, and often even components, however they are used in different ways to answer fundamentally different questions. As such, attempts to emulate them using machine learning should reflect this. W hile the use of machine learning to emulate weather forecast models is a relatively new endeavour there is a rich history of climate model emulation. This is primarily because while weather modelling is an initial condition problem which intimately depends on the current state of the atmosphere, climate modelling is predominantly a boundary condition problem. In order to emulate the response of the climate to different drivers therefore, representation of the full dynamical evolution of the atmosphere is neither necessary, or in many cases, desirable. Climate scientists are typically interested in different questions also. Indeed emulating the steady-state climate response has been possible for many years and provides significant speed increases that allow solving inverse problems for e.g. parameter estimation. Nevertheless, the large datasets, non-linear relationships and limited training data make Climate a domain which is rich in interesting machine learning challenges. Here I seek to set out the current state of climate model emulation and demonstrate how, despite some challenges, recent advances in machine learning provide new opportunities for creating useful statistical models of the climate.
Climate models are complicated software systems that approximate atmospheric and oceanic fluid mechanics at a coarse spatial resolution. Typical climate forecasts only explicitly resolve processes larger than 100 km and approximate any process occurr ing below this scale (e.g. thunderstorms) using so-called parametrizations. Machine learning could improve upon the accuracy of some traditional physical parametrizations by learning from so-called global cloud-resolving models. We compare the performance of two machine learning models, random forests (RF) and neural networks (NNs), at parametrizing the aggregate effect of moist physics in a 3 km resolution global simulation with an atmospheric model. The NN outperforms the RF when evaluated offline on a testing dataset. However, when the ML models are coupled to an atmospheric model run at 200 km resolution, the NN-assisted simulation crashes with 7 days, while the RF-assisted simulations remain stable. Both runs produce more accurate weather forecasts than a baseline configuration, but globally averaged climate variables drift over longer timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا