ﻻ يوجد ملخص باللغة العربية
Soft demodulation is a basic module of traditional communication receivers. It converts received symbols into soft bits, that is, log likelihood ratios (LLRs). However, in the nonideal additive white Gaussian noise (AWGN) channel, it is difficult to accurately calculate the LLR. In this letter, we propose a demodulator, DemodNet, based on a fully convolutional neural network with variable input and output length. We use hard bit information to train the DemodNet, and we propose log probability ratio (LPR) based on the output layer of the trained DemodNet to realize soft demodulation. The simulation results show that under the AWGN channel, the performance of both hard demodulation and soft demodulation of DemodNet is very close to the traditional methods. In three non-ideal channel scenarios, i.e., the presence of frequency deviation, additive generalized Gaussian noise (AGGN) channel, and Rayleigh fading channel, the performance of channel decoding using the soft information LPR obtained by DemodNet is better than the performance of decoding using the exact LLR calculated under the ideal AWGN assumption.
The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD
Objective: A novel structure based on channel-wise attention mechanism is presented in this paper. Embedding with the proposed structure, an efficient classification model that accepts multi-lead electrocardiogram (ECG) as input is constructed. Metho
This letter presents a novel high impedance fault (HIF) detection approach using a convolutional neural network (CNN). Compared to traditional artificial neural networks, a CNN offers translation invariance and it can accurately detect HIFs in spite
The millimeter-wave (mm-wave) radio-over-fiber (RoF) systems have been widely studied as promising solutions to deliver high-speed wireless signals to end users, and neural networks have been studied to solve various linear and nonlinear impairments.
Noise and low quality of ECG signals acquired from Holter or wearable devices deteriorate the accuracy and robustness of R-peak detection algorithms. This paper presents a generic and robust system for R-peak detection in Holter ECG signals. While ma