ﻻ يوجد ملخص باللغة العربية
In this paper, we mainly discuss analytical expressions of positive definiteness for a special 4th order 3-dimensional symmetric tensor defined by the constructed model for a physical phenomenon. Firstly, an analytically necessary and sufficient conditions of 4th order 2-dimensional symmetric tensors are given to test its positive definiteness. Furthermore, by means of such a result, a necessary and sufficient condition of positive definiteness is obtained for a special 4th order 3-dimensional symmetric tensor. Such an analytical conditions can be used for verifying the vacuum stability of general scalar potentials of two real singlet scalar fields and the Higgs boson. The positive semi-definiteness conclusions are presented too.
The strict opositivity of 4th order symmetric tensor may apply to detect vacuum stability of general scalar potential. For finding analytical expressions of (strict) opositivity of 4th order symmetric tensor, we may reduce its order to 3rd order to b
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if
In this paper, we mainly discuss the analytic expression of exact copositivity of 4th order symmetric tensor defined by the special physical model. We first show that for the general 4th order 2-dimensional symmetric tensor, it can be transformed int
This paper has been withdrawn. This paper focuses on the admissibility condition for fractional-order singular system with order $alpha in (0,1)$. The definitions of regularity, impulse-free and admissibility are given first, then a sufficient and ne
In particle physics, scalar potentials have to be bounded from below in order for the physics to make sense. The precise expressions of checking lower bound of scalar potentials are essential, which is an analytical expression of checking copositivit