ﻻ يوجد ملخص باللغة العربية
We present simulations of one magnetic monopole interacting with multiple magnetic singularities. Three-dimensional plots of the energy density are constructed from explicit solutions to the Bogomolny equation obtained by Blair, Cherkis, and Durcan. Animations follow trajectories derived from collective coordinate mechanics on the multi-centered Taub--NUT monopole moduli space. We supplement our numerical results with a complete analytic treatment of the single-defect case.
The moduli space of centred Bogomolny-Prasad-Sommmerfield 2-monopole fields is a 4-dimensional manifold M with a natural metric, and the geodesics on M correspond to slow-motion monopole dynamics. The best-known case is that of monopoles on R^3, wher
Inspired by the geometrical methods allowing the introduction of mechanical systems confined in the plane and endowed with exotic galilean symmetry, we resort to the Lagrange-Souriau 2-form formalism, in order to look for a wide class of 3D systems,
One of the most remarkable examples of emergent quasi-particles, is that of the fractionalization of magnetic dipoles in the low energy configurations of materials known as spin ice, into free and unconfined magnetic monopoles interacting via Coulomb
A new static and azimuthally symmetric magnetic monopolelike object, which looks like a Dirac monopole when seen from far away but smoothly changes to a dipole near the monopole position and vanishes at the origin, is discussed. This monopolelike obj
An analytic static monopole solution is found in global AdS$_4$, in the limit of small backreaction. This solution is mapped in Poincare patch to a falling monopole configuration, which is dual to a local quench triggered by the injection of a conden