ﻻ يوجد ملخص باللغة العربية
We explore the parameter space of a variant of the SLIM model, which extends the SM with a singlet and a doublet of complex scalars and two generations of right-handed neutrinos, the lightest of which has a mass in the MeV to GeV region and plays the role of Dark Matter candidate. We impose the current collider and astrophysical constrains, as well as bounds from Lepton Flavour Violating experiments. We also consider the discovery potential in the XENON experiment exploiting the electron recoil as a possible direct detection signal. Despite the DM in this model being leptophilic, the predicted cross sections are too low due to the heavy charged mediator.
The possibility of direct detection of light fermionic dark matter in neutrino detectors is explored from a model-independent standpoint. We consider all operators of dimension six or lower which can contribute to the interaction $bar{f} p to e^+ n$,
We analyze the effects of introducing vector-like leptons in the Higgs Triplet Model providing the lightest vector-like neutrino as a Dark Matter candidate. We explore the effect of the relic density constraint on the mass and Yukawa coupling of dark
MeV particles have been advocated as Dark Matter (DM) candidates in different contexts. This hypothesis can be tested indirectly by searching for the Standard Model (SM) products of DM self-annihilations. As the signal from DM self-annihilations depe
Right-handed neutrinos with MeV to GeV mass are very promising candidates for dark matter (DM). Not only can they solve the missing satellite puzzle, the cusp-core problem of inner DM density profiles, and the too-big-to fail problem, {it i.e.} that
We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive oppo