ﻻ يوجد ملخص باللغة العربية
Coronal mass ejections (CMEs) are large-scale explosions of the coronal magnetic field. It is believed that magnetic reconnection significantly builds up the core structure of CMEs, a magnetic flux rope, during the eruption. However, the quantitative evolution of the flux rope, particularly its toroidal flux, is still unclear. In this paper, we study the evolution of the toroidal flux of the CME flux rope for four events. The toroidal flux is estimated as the magnetic flux in the footpoint region of the flux rope, which is identified by a method that simultaneously takes the coronal dimming and the hook of the flare ribbon into account. We find that the toroidal flux of the CME flux rope for all four events shows a two-phase evolution: a rapid increasing phase followed by a decreasing phase. We further compare the evolution of the toroidal flux with that of the Geostationary Operational Environmental Satellites soft X-ray flux and find that they are basically synchronous in time, except that the peak of the former is somewhat delayed. The results suggest that the toroidal flux of the CME flux rope may be first quickly built up by the reconnection mainly taking place in the sheared overlying field and then reduced by the reconnection among the twisted field lines within the flux rope, as enlightened by a recent 3D magnetohydrodynamic simulation of CMEs.
In past decades, much progress has been achieved on the origin and evolution of coronal mass ejections (CMEs). In-situ observations of the counterparts of CMEs, especially magnetic clouds (MCs) near the Earth, have provided measurements of the struct
This article completes and extends a recent study of the Grad-Shafranov (GS) reconstruction in toroidal geometry, as applied to a two and a half dimensional configurations in space plasmas with rotational symmetry. A further application to the benchm
Magnetic flux ropes (MFRs) rising buoyantly through the Suns convection zone are thought to be subject to viscous forces preventing them from rising coherently. Numerous studies have suggested that MFRs require a minimum twist in order to remain cohe
The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadr
Coronal magnetic flux ropes are generally considered to be the core structure of large-scale solar eruptions. Recent observations found that solar eruptions could be initiated by a sequence of flux feeding, during which chromospheric fibrils rise upw