ﻻ يوجد ملخص باللغة العربية
Optical measurements in doped Mott insulators have discovered the emergence of spectral weights at mid-infrared (MIR) upon chemical doping and photodoping. MIR weights may have a relation to string-type excitation of spins, which is induced by a doped hole generating misarranged spins with respect to their sublattice. There are two types of string effects: one is an $S^z$ string that is repairable by quantum spin flips and the other is a phase string irreparable by the spin flips. We investigate the effect of $S^{z}$ and phase strings on MIR weights. Calculating the optical conductivity of the single-hole Hubbard model in the strong-coupling regime and the $t$-$J$ model on two-leg ladders by using time-dependent Lanczos and density-matrix renormalization group, we find that phase strings make a crucial effect on the emergence of MIR weights as compared with $S^{z}$ strings. Our findings indicate that a mutual Chern-Simons gauge field acting between spin and charge degrees of freedom, which is the origin of phase strings, is significant for obtaining MIR weights. Conversely, if we remove this gauge field, no phase is picked up by a doped hole. As a result, a spin-polaron accompanied by a local spin distortion emerges and a quasiparticle with a cosine-like energy dispersion is formed in single-particle spectral function. Furthermore, we suggest a Floquet engineering to examine the phase-string effect in cold atoms.
The Hubbard model on a two-leg ladder structure has been studied by a combination of series expansions at T=0 and the density-matrix renormalization group. We report results for the ground state energy $E_0$ and spin-gap $Delta_s$ at half-filling, as
We applied the Recurrent Variational Approach to the two-leg Hubbard ladder. At half-filling, our variational Ansatz was a generalization of the resonating valence bond state. At finite doping, hole pairs were allowed to move in the resonating valenc
In this paper, we have systematically studied the single hole problem in two-leg Hubbard and $t$-$J$ ladders by large-scale density-matrix renormalization group calculations. We found that the doped hole in both models behaves similarly with each oth
New phases with broken discrete Ising symmetries are uncovered in quantum materials with strong electronic correlations. The two-leg ladder cuprate textbf{$Sr_{14-x}Ca_{x}Cu_{24}O_{41}$} hosts a very rich phase diagram where, upon hole doping, the sy
Topological order, the hallmark of fractional quantum Hall states, is primarily defined in terms of ground-state degeneracy on higher-genus manifolds, e.g. the torus. We investigate analytically and numerically the smooth crossover between this topol