ﻻ يوجد ملخص باللغة العربية
This paper describes the design and performance of a compact detector, BDX-MINI, that incorporates all features of a concept that optimized the detection of light dark matter produced by electrons in a beam dump. It represents a reduced version of the future BDX experiment expected to run at JLAB. BDX-MINI was exposed to penetrating particles produced by a 2.176 GeV electron beam incident on the beam dump of Hall A at Jefferson Lab. The detector consists of 30.5 kg of PbWO4 crystals with sufficient material following the beam dump to eliminate all known particles except neutrinos. The crystals are read out using silicon photomultipliers. Completely surrounding the detector are a passive layer of tungsten and two active scintillator veto systems, which are also read out using silicon photomultipliers. The design was validated and the performance of the robust detector was shown to be stable during a six month period during which the detector was operated with minimal access.
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential for a 1 m$^3$ segmented plastic scintillator detector placed downstream of the beam-dump at one of t
This document complements and completes what was submitted last year to PAC45 as an update to the proposal PR12-16-001 Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab submitted to JLab-PAC44 in 2016. Following the suggestions cont
This document is an update to the proposal PR12-16-001 Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab submitted to JLab-PAC44 in 2016 reporting progress in addressing questions raised regarding the beam-on backgrounds. The concer
This paper discusses the quality and performance of currently available PbWO$_4$ crystals of relevance to high-resolution electromagnetic calorimetry, e.g. detectors for the Neutral Particle Spectrometer at Jefferson Lab or those planned for the Elec
The CDEX-10 experiment searches for light weakly-interacting massive particles, a form of dark matter, at the China JinPing underground laboratory, where approximately 10 kg of germanium detectors are arranged in an array and immersed in liquid nitro