ترغب بنشر مسار تعليمي؟ اضغط هنا

WiFi-Based Channel Impulse Response Estimation and Localization via Multi-Band Splicing

69   0   0.0 ( 0 )
 نشر من قبل Mahdi Barzegar Khalilsarai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using commodity WiFi data for applications such as indoor localization, object identification and tracking and channel sounding has recently gained considerable attention. We study the problem of channel impulse response (CIR) estimation from commodity WiFi channel state information (CSI). The accuracy of a CIR estimation method in this setup is limited by both the available channel bandwidth as well as various CSI distortions induced by the underlying hardware. We propose a multi-band splicing method that increases channel bandwidth by combining CSI data across multiple frequency bands. In order to compensate for the CSI distortions, we develop a per-band processing algorithm that is able to estimate the distortion parameters and remove them to yield the clean CSI. This algorithm incorporates the atomic norm denoising sparse recovery method to exploit channel sparsity. Splicing clean CSI over M frequency bands, we use orthogonal matching pursuit (OMP) as an estimation method to recover the sparse CIR with high (M-fold) resolution. Unlike previous works in the literature, our method does not appeal to any limiting assumption on the CIR (other than the widely accepted sparsity assumption) or any ad hoc processing for distortion removal. We show, empirically, that the proposed method outperforms the state of the art in terms of localization accuracy.

قيم البحث

اقرأ أيضاً

We study the problem of indoor localization using commodity WiFi channel state information (CSI) measurements. The accuracy of methods developed to address this problem is limited by the overall bandwidth used by the WiFi device as well as various ty pes of signal distortions imposed by the underlying hardware. In this paper, we propose a localization method that performs channel impulse response (CIR) estimation by splicing measured CSI over multiple WiFi bands. In order to overcome hardware-induced phase distortions, we propose a phase retrieval (PR) scheme that only uses CSI magnitude values to estimate the CIR. To achieve high localization accuracy, the PR scheme involves a sparse recovery step, which exploits the fact that the CIR is sparse over the delay domain, due to the small number of contributing signal paths in an indoor environment. Simulation results indicate that our approach outperforms the state of the art by an order of magnitude (cm-level localization accuracy) for more than 90% of the trials and for various SNR regimes.
In this preliminary work, we study the problem of {it distributed} authentication in wireless networks. Specifically, we consider a system where multiple Bob (sensor) nodes listen to a channel and report their {it correlated} measurements to a Fusion Center (FC) which makes the ultimate authentication decision. For the feature-based authentication at the FC, channel impulse response has been utilized as the device fingerprint. Additionally, the {it correlated} measurements by the Bob nodes allow us to invoke Compressed sensing to significantly reduce the reporting overhead to the FC. Numerical results show that: i) the detection performance of the FC is superior to that of a single Bob-node, ii) compressed sensing leads to at least $20%$ overhead reduction on the reporting channel at the expense of a small ($<1$ dB) SNR margin to achieve the same detection performance.
A typical handover problem requires sequence of complex signaling between a UE, the serving, and target base station. In many handover problems the down link based measurements are transferred from a user equipment to a serving base station and the d ecision on handover is made on these measurements. These measurements together with the signaling between the user equipment and the serving base station is computationally expensive and can potentially drain user equipment battery. Coupled with this, the future networks are densely deployed with multiple frequency layers, rendering current handover mechanisms sub-optimal, necessitating newer methods that can improve energy efficiency. In this study, we will investigate a ML based approach towards secondary carrier prediction for inter-frequency handover using the up-link reference signals.
222 - Rui Yin , Zhiqun Zou , Celimuge Wu 2021
The unlicensed spectrum has been utilized to make up the shortage on frequency spectrum in new radio (NR) systems. To fully exploit the advantages brought by the unlicensed bands, one of the key issues is to guarantee the fair coexistence with WiFi s ystems. To reach this goal, timely and accurate estimation on the WiFi traffic loads is an important prerequisite. In this paper, a machine learning (ML) based method is proposed to detect the number of WiFi users on the unlicensed bands. An unsupervised Neural Network (NN) structure is applied to filter the detected transmission collision probability on the unlicensed spectrum, which enables the NR users to precisely rectify the measurement error and estimate the number of active WiFi users. Moreover, NN is trained online and the related parameters and learning rate of NN are jointly optimized to estimate the number of WiFi users adaptively with high accuracy. Simulation results demonstrate that compared with the conventional Kalman Filter based detection mechanism, the proposed approach has lower complexity and can achieve a more stable and accurate estimation.
99 - Jeremie Bigot 2016
We provide a new estimator of integral operators with smooth kernels, obtained from a set of scattered and noisy impulse responses. The proposed approach relies on the formalism of smoothing in reproducing kernel Hilbert spaces and on the choice of a n appropriate regularization term that takes the smoothness of the operator into account. It is numerically tractable in very large dimensions. We study the estimators robustness to noise and analyze its approximation properties with respect to the size and the geometry of the dataset. In addition, we show minimax optimality of the proposed estimator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا