ﻻ يوجد ملخص باللغة العربية
We develop a denotational semantics of muLL, a version of propositional Linear Logic with least and greatest fixed points extending David Baeldes propositional muMALL with exponentials. Our general categorical setting is based on the notion of Seely category and on strong functors acting on them. We exhibit two simple instances of this setting. In the first one, which is based on the category of sets and relations, least and greatest fixed points are interpreted in the same way. In the second one, based on a category of sets equipped with a notion of totality (non-uniform totality spaces) and relations preserving them, least and greatest fixed points have distinct interpretations. This latter model shows that muLL enjoys a denotational form of normalization of proofs.
We develop a denotational semantics of Linear Logic with least and greatest fixed points in coherence spaces (where both fixed points are interpreted in the same way) and in coherence spaces with totality (where they have different interpretations).
Linear Logic was introduced by Girard as a resource-sensitive refinement of classical logic. It turned out that full propositional Linear Logic is undecidable (Lincoln, Mitchell, Scedrov, and Shankar) and, hence, it is more expressive than (modalized
Categorical quantum mechanics exploits the dagger-compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of q
We develop a fixed-point extension of quantitative equational logic and give semantics in one-bounded complete quantitative algebras. Unlike previous related work about fixed-points in metric spaces, we are working with the notion of approximate equa
Process calculi based on logic, such as $pi$DILL and CP, provide a foundation for deadlock-free concurrent programming. However, in previous work, there is a mismatch between the rules for constructing proofs and the term constructors of the $pi$-cal