ﻻ يوجد ملخص باللغة العربية
Recent years have witnessed the rapid progress of perception algorithms on top of LiDAR, a widely adopted sensor for autonomous driving systems. These LiDAR-based solutions are typically data hungry, requiring a large amount of data to be labeled for training and evaluation. However, annotating this kind of data is very challenging due to the sparsity and irregularity of point clouds and more complex interaction involved in this procedure. To tackle this problem, we propose FLAVA, a systematic approach to minimizing human interaction in the annotation process. Specifically, we divide the annotation pipeline into four parts: find, localize, adjust and verify. In addition, we carefully design the UI for different stages of the annotation procedure, thus keeping the annotators to focus on the aspects that are most important to each stage. Furthermore, our system also greatly reduces the amount of interaction by introducing a light-weight yet effective mechanism to propagate the annotation results. Experimental results show that our method can remarkably accelerate the procedure and improve the annotation quality.
Deep learning has been used to demonstrate end-to-end neural network learning for autonomous vehicle control from raw sensory input. While LiDAR sensors provide reliably accurate information, existing end-to-end driving solutions are mainly based on
With the advent of autonomous vehicles, LiDAR and cameras have become an indispensable combination of sensors. They both provide rich and complementary data which can be used by various algorithms and machine learning to sense and make vital inferenc
Loop closure detection is an essential component of Simultaneous Localization and Mapping (SLAM) systems, which reduces the drift accumulated over time. Over the years, several deep learning approaches have been proposed to address this task, however
Micro-aerial vehicles (MAVs) are becoming ubiquitous across multiple industries and application domains. Lightweight MAVs with only an onboard flight controller and a minimal sensor suite (e.g., IMU, vision, and vertical ranging sensors) have potenti
Modern LiDAR-SLAM (L-SLAM) systems have shown excellent results in large-scale, real-world scenarios. However, they commonly have a high latency due to the expensive data association and nonlinear optimization. This paper demonstrates that actively s