ترغب بنشر مسار تعليمي؟ اضغط هنا

High-velocity moving groups in the Solar neighborhood in Gaia DR2

105   0   0.0 ( 0 )
 نشر من قبل Roman Baluev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use an improved wavelet analysis technique to reconstruct the $(U,V,W)$ velocity distribution for $sim 250000$ stars from Gaia DR2, residing in the solar neighborhood of $200$~pc. The 2D wavelet transforms for three bivariate distributions $(U,V)$, $(U,W)$, and $(V,W)$ were investigated. Though most of currently known (low-velocity) stellar moving groups are densely overlapped in these diagrams, our analysis allowed to detect and disentangle about twenty statistically significant 3D groups of stars with high velocities. Most of them appear new. We also discuss the issue of correct noise thresholding in the wavelet transform and highlight the importance of using a global rather than local statistic for that. Using of a local significance measure may lead to an overstated statistical confidence for individual patterns due to the effect of multiple testing.



قيم البحث

اقرأ أيضاً

The aim of this work is to contribute to the understanding of the stellar velocity distribution in the solar neighborhood (SN). We propose that the structures on the $U-V$ planes, known as the moving groups, can be mainly explained by the spiral arms perturbations. The applied model of the Galactic disk and spiral arms, with the parameters defined by observational data and with pattern speed $Omega_p=$28.0 km s$^{-1}$ kpc$^{-1}$, is the same that allowed us to explain the origin of the Local Arm and the Suns orbit trapped inside the corotation resonance (CR). We show that the $U-V$ picture of the SN consists of the main component, associated with the CR, and the inner and outer structures, which we could associate with the Hercules and Sirius streams, respectively. The Coma-Berenices and Hyades-Pleiades groups and the Sun itself belong to the main part. The substructures of Hercules are formed mainly by the nearby 8/1, 12/1, and even 6/1 inner Lindblad resonances, while Sirius is shaped by the bulk of overlapping outer Lindblad resonances, -8/1, -12/1, -16/1, which are stuck to the CR. This richness in resonances only exists near corotation, which should be of the spiral arms, not of the Galactic bar, whose stable corotation zone is far away from the Sun. The models predictions of the velocity distribution match qualitatively and quantitatively the distribution provided by Gaia DR2.
We study the three dimensional arrangement of young stars in the solar neighbourhood using the second release of the Gaia mission (Gaia DR2) and we provide a new, original view of the spatial configuration of the star forming regions within 500 pc fr om the Sun. By smoothing the star distribution through a gaussian filter, we construct three dimensional density maps for early-type stars (upper-main sequence, UMS) and pre-main sequence (PMS) sources. The PMS and the UMS samples are selected through a combination of photometric and astrometric criteria. A side product of the analysis is a three dimensional, G-band extinction map, which we use to correct our colour-magnitude diagram for extinction and reddening. Both density maps show three prominent structures, Scorpius-Centaurus, Orion, and Vela. The PMS map shows a plethora of lower mass star forming regions, such as Taurus, Perseus, Cepheus, Cassiopeia, and Lacerta, which are less visible in the UMS map, due to the lack of large numbers of bright, early-type stars. We report the finding of a candidate new open cluster towards $l, b sim 218.5^{circ}, -2^{circ}$, which could be related to the Orion star forming complex. We estimate ages for the PMS sample and we study the distribution of PMS stars as a function of their age. We find that younger stars cluster in dense, compact clumps, and are surrounded by older sources, whose distribution is instead more diffuse. The youngest groups that we find are mainly located in Scorpius-Centaurus, Orion, Vela, and Taurus. Cepheus, Cassiopeia, and Lacerta are instead more evolved and less numerous. Finally, we find that the three dimensional density maps show no evidence for the existence of the ring-like structure which is usually referred to as the Gould Belt.
We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at M_bol~ -5.2 mag. The resulting LF however shows two tails at lower and higher luminosities more extended than those previously found, indicati ng that AGB carbon stars with Solar metallicity may reach M_bol~-6.0 mag. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found. The Galactic spatial distribution and velocity components of the N-, SC- and J-type stars are very similar, while about 30 % of the R-hot stars in the sample are located at distances larger than ~ 500 pc from the Galactic Plane, and show a significant drift with respect to the local standard of rest. The LF derived for N- and SC-type in the Solar neighbourhood fully agrees with the expected luminosity of stars of 1.5-3 M_o on the AGB. On a theoretical basis, the existence of an extended low luminosity tail would require a contribution of extrinsic low mass carbon stars, while the high luminosity one would imply that stars with mass up to ~5 Mo may become carbon star on the AGB. J-type stars not only differ significantly in their chemical composition with respect to the N- and SC-types but also in their LF, which reinforces the idea that these carbon stars belong to a dvifferent type whose origin is still unknown. The derived luminosities of R-hot stars make these stars unlikely to be in the red-clump as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity, indicate that most of the N-, SC- and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc.
88 - Kohei Hattori 2018
We report the discovery of 30 stars with extreme space velocities ($>$ 480 km/s) in the Gaia-DR2 archive. These stars are a subset of 1743 stars with high-precision parallax, large tangential velocity ($v_{tan}>$ 300 km/s), and measured line-of-sight velocity in DR2. By tracing the orbits of the stars back in time, we find at least one of them is consistent with having been ejected by the supermassive black hole at the Galactic Center. Another star has an orbit that passed near the Large Magellanic Cloud (LMC) about 200 Myr ago. Unlike previously discovered blue hypervelocity stars, our sample is metal-poor (-1.5 $<$ [Fe/H] $<$ -1.0) and quite old ($>$ 1 Gyr). We discuss possible mechanisms for accelerating old stars to such extreme velocities. The high observed space density of this population, relative to potential acceleration mechanisms, implies that these stars are probably bound to the Milky Way (MW). If they are bound, the discovery of this population would require a local escape speed of around $sim$ 600 km/s and consequently imply a virial mass of $M_{200} sim 1.4 times 10^{12} M_odot$ for the MW.
A major obstacle to interpreting the rotation period distribution for main-sequence stars from Kepler mission data has been the lack of precise evolutionary status for these objects. We address this by investigating the evolutionary status based on G aia Data Release 2 parallaxes and photometry for more than 30,000 Kepler stars with rotation period measurements. Many of these are subgiants, and should be excluded in future work on dwarfs. We particularly investigate a 193-star sample of solar analogs, and report newly-determined rotation periods for 125 of these. These include 54 stars from a prior sample, of which can confirm the periods for 50. The remainder are new, and 10 of them longer than solar rotation period, suggesting that sun-like stars continue to spin down on the main sequence past solar age. Our sample of solar analogs could potentially serve as a benchmark for future missions such as PLATO, and emphasizes the need for additional astrometric, photometric, and spectroscopic information before interpreting the stellar populations and results from time-series surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا