ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing Efficient Dust-Formation at Low Metallicity in Extragalactic Carbon-Rich Wolf-Rayet Binaries

122   0   0.0 ( 0 )
 نشر من قبل Ryan Lau
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Spitzer/IRAC observations of dust formation from six extragalactic carbon-rich Wolf-Rayet (WC) binary candidates in low-metallicity (Z $lesssim0.65$ Z$_odot$) environments using multi-epoch mid-infrared (IR) imaging data from the SPitzer InfraRed Intensive Transients Survey (SPIRITS). Optical follow-up spectroscopy of SPIRITS~16ln, 19q, 16df, 18hb, and 14apu reveals emission features from C IV $lambda5801text{-}12$~and/or the C III-IV $lambda4650$ He II $lambda4686$~blend that are consistent with early-type WC stars. We identify SPIRITS~16ln as the variable mid-IR counterpart of the recently discovered colliding-wind WC4+O binary candidate, N604-WRXc, located in the sub-solar metallicity NGC 604 H II~region in M33. We interpret the mid-IR variability from SPIRITS~16ln as a dust-formation episode in an eccentric colliding-wind WC binary. SPIRITS~19q, 16df, 14apu, and 18hb exhibit absolute [3.6] magnitudes exceeding one of most IR-luminous dust-forming WC systems known, WR~104 (M$_mathrm{[3.6]}lesssim-12.3$). An analysis of dust formation in the mid-IR outburst from SPIRITS~19q reveals a high dust production rate of $dot{M}_dgtrsim2times10^{-6}$ M$_odot$ yr$^{-1}$, which may therefore exceed that of the most efficient dust-forming WC systems known. We demonstrate that efficient dust-formation is feasible from early-type WC binaries in the theoretical framework of colliding-wind binary dust formation if the systems host an O-type companion with a high mass-loss rate ($dot{M}gtrsim1.6times10^{-6}$ M$_odot$ yr$^{-1}$). This efficient dust-formation from early-type WC binaries highlights their potential role as significant sources of dust in low-metallicity environments.



قيم البحث

اقرأ أيضاً

We present a dust spectral energy distribution (SED) and binary stellar population analysis revisiting the dust production rates (DPRs) in the winds of carbon-rich Wolf-Rayet (WC) binaries and their impact on galactic dust budgets. DustEM SED models of 19 Galactic WC ``dustars reveal DPRs of $dot{M}_dsim10^{-10}-10^{-6}$ M$_odot$ yr$^{-1}$ and carbon dust condensation fractions, $chi_C$, between $0.002 - 40%$. A large ($0.1 - 1.0$ $mu$m) dust grain size composition is favored for efficient dustars where $chi_Cgtrsim1%$. Results for dustars with known orbital periods verify a power-law relation between $chi_C$, orbital period, WC mass-loss rate, and wind velocity consistent with predictions from theoretical models of dust formation in colliding-wind binaries. We incorporated dust production into Binary Population and Spectral Synthesis (BPASS) models to analyze dust production rates from WC dustars, asymptotic giant branch stars (AGBs), red supergiants (RSGs), and core-collapse supernovae (SNe). BPASS models assuming constant star formation (SF) and a co-eval $10^6$ M$_odot$ stellar population were performed at low, Large Magellanic Cloud (LMC)-like, and solar metallicities (Z = 0.001, 0.008, and 0.020). Both constant SF and co-eval models show that SNe are net dust destroyers at all metallicities. Constant SF models at LMC-like metallicities show that AGB stars slightly outproduce WC binaries and RSGs by factors of $2-3$, whereas at solar metallicites WC binaries are the dominant source of dust for $sim60$ Myr until the onset of AGBs, which match the dust input of WC binaries. Co-eval population models show that for bursty SF, AGB stars dominate dust production at late times ($tgtrsim 70$ Myr).
Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condense d into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.
The Wolf-Rayet nebula M1-67 around WR124 is located above the Galactic plane in a region mostly empty of interstellar medium, which makes it the perfect target to study the mass-loss episodes associated with the late stages of massive star evolution. Archive photometric observations from WISE, Spitzer (MIPS) and Herschel (PACS and SPIRE) are used to construct the spectral energy distribution (SED) of the nebula in the wavelength range of 12-500$mu$m. The infrared (photometric and spectroscopic) data and nebular optical data from the literature are modeled simultaneously using the spectral synthesis code Cloudy, where the free parameters are the gas density distribution and the dust grain size distribution. The infrared SED can be reproduced by dust grains with two size distributions: a MRN power-law distribution with grain sizes between 0.005 and 0.05$mu$m and a population of large grains with representative size 0.9$ mu$m. The latter points towards an eruptive origin for the formation of M1-67. The model predicts a nebular ionized gas mass of $M_mathrm{ion} = 9.2^{+1.6}_{-1.5}~mathrm{M}_odot$ and the estimated mass-loss rate during the dust-formation period is $dot{M} approx 6 times 10^{-4} mathrm{M}_odot$yr$^{-1}$. We discuss the implications of our results in the context of single and binary stellar evolution and propose that M1-67 represents the best candidate for a post-common envelope scenario in massive stars.
Surveys of Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) have yielded a fairly complete catalog of 154 known stars. We have conducted a comprehensive, multiwavelength study of the interstellar/circumstellar environments of WR stars, using the Magellanic Cloud Emission Line Survey (MCELS) images in the H$alpha$, [O III], and [S II] lines; Spitzer Space Telescope 8 and 24 $mu$m images; Blanco 4m Telescope H$alpha$ CCD images; and Australian Telescope Compact Array (ATCA) + Parkes Telescope H I data cube of the LMC. We have also examined whether the WR stars are in OB associations, classified the H II environments of WR stars, and used this information to qualitatively assess the WR stars evolutionary stages. The 30 Dor giant H II region has active star formation and hosts young massive clusters, thus we have made statistical analyses for 30 Dor and the rest of the LMC both separately and altogether. Due to the presence of massive young clusters, the WR population in 30 Dor is quite different from that from elsewhere in the LMC. We find small bubbles ($<$50 pc diameter) around $sim$12% of WR stars in the LMC, most of which are WN stars and not in OB associations. The scarcity of small WR bubbles is discussed. Spectroscopic analyses of abundances are needed to determine whether the small WR bubbles contain interstellar medium or circumstellar medium. Implications of the statistics of interstellar environments and OB associations around WR stars are discussed. Multiwavelength images of each LMC WR star are presented.
We investigate the influence of Wolf-Rayet (W-R) stars on their surrounding star-forming molecular clouds. We study five regions containing W-R stars in the inner Galactic plane ($lsim$[14$^circ$-52$^circ$]), using multi-wavelength data from near-inf rared to radio wavelengths. Analysis of $^{13}$CO line data reveals that these W-R stars have developed gas-deficient cavities in addition to molecular shells with expansion velocities of a few km s$^{-1}$. The pressure owing to stellar winds primarily drives these expanding shells and sweeps up the surrounding matter to distances of a few pc. The column densities of shells are enhanced by a minimum of 14% for one region to a maximum of 88% for another region with respect to the column densities within their central cavities. No active star formation - including molecular condensations, protostars, or ionized gas - is found inside the cavities, whereas such features are observed around the molecular shells. Although the expansion of ionized gas is considered an effective mechanism to trigger star formation, the dynamical ages of the HII regions in our sample are generally not sufficiently long to do so efficiently. Overall, our results hint at the possible importance of negative W-R wind-driven feedback on the gas-deficient cavities, where star formation is quenched as a consequence. In addition, the presence of active star formation around the molecular shells indicates that W-R stars may also assist in accumulating molecular gas, and that they could initiate star formation around those shells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا