ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust shadow estimation

179   0   0.0 ( 0 )
 نشر من قبل Pei Zeng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficiently estimating properties of large and strongly coupled quantum systems is a central focus in many-body physics and quantum information theory. While quantum computers promise speedups for many such tasks, near-term devices are prone to noise that will generally reduce the accuracy of such estimates. Here we show how to mitigate errors in the shadow estimation protocol recently proposed by Huang, Kueng, and Preskill. By adding an experimentally friendly calibration stage to the standard shadow estimation scheme, our robust shadow estimation algorithm can obtain an unbiased estimate of the classical shadow of a quantum system and hence extract many useful properties in a sample-efficient and noise-resilient manner given only minimal assumptions on the experimental conditions. We give rigorous bounds on the sample complexity of our protocol and demonstrate its performance with several numerical experiments.



قيم البحث

اقرأ أيضاً

We present an extension to the robust phase estimation protocol, which can identify incorrect results that would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test these consistency checks for several common noise models, and identify two possible checks with high accuracy in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of these checks may be chosen based on resource availability, or they can be used together in order to provide additional verification.
The Robust Phase Estimation (RPE) protocol was designed to be an efficient and robust way to calibrate quantum operations. The robustness of RPE refers to its ability to estimate a single parameter, usually gate amplitude, even when other parameters are poorly calibrated or when the gate experiences significant errors. Here we demonstrate the robustness of RPE to errors that affect initialization, measurement, and gates. In each case, the error threshold at which RPE begins to fail matches quantitatively with theoretical bounds. We conclude that RPE is an effective and reliable tool for calibration of one-qubit rotations and that it is particularly useful for automated calibration routines and sensor tasks.
We describe the formalism for optimally estimating and controlling both the state of a spin ensemble and a scalar magnetic field with information obtained from a continuous quantum limited measurement of the spin precession due to the field. The full quantum parameter estimation model is reduced to a simplified equivalent representation to which classical estimation and control theory is applied. We consider both the tracking of static and fluctuating fields in the transient and steady state regimes. By using feedback control, the field estimation can be made robust to uncertainty about the total spin number.
We adapt the robust phase estimation algorithm to the evaluation of energy differences between two eigenstates using a quantum computer. This approach does not require controlled unitaries between auxiliary and system registers or even a single auxil iary qubit. As a proof of concept, we calculate the energies of the ground state and low-lying electronic excitations of a hydrogen molecule in a minimal basis on a cloud quantum computer. The denominative robustness of our approach is then quantified in terms of a high tolerance to coherent errors in the state preparation and measurement. Conceptually, we note that all quantum phase estimation algorithms ultimately evaluate eigenvalue differences.
In this paper, we investigate the problem of estimating the phase of a coherent state in the presence of unavoidable noisy quantum states. These unwarranted quantum states are represented by outlier quantum states in this study. We first present a st atistical framework of robust statistics in a quantum system to handle outlier quantum states. We then apply the method of M-estimators to suppress untrusted measurement outcomes due to outlier quantum states. Our proposal has the advantage over the classical methods in being systematic, easy to implement, and robust against occurrence of noisy states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا