ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet conformal field theories with generally deformed Hamiltonians

104   0   0.0 ( 0 )
 نشر من قبل Ruihua Fan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study non-equilibrium dynamics in Floquet conformal field theories (CFTs) in 1+1D, in which the driving Hamiltonian involves the energy-momentum density spatially modulated by an arbitrary smooth function. This generalizes earlier work which was restricted to the sine-square deformed type of Floquet Hamiltonians, operating within a $mathfrak{sl}_2$ sub-algebra. Here we show remarkably that the problem remains soluble in this generalized case which involves the full Virasoro algebra, based on a geometrical approach. It is found that the phase diagram is determined by the stroboscopic trajectories of operator evolution. The presence/absence of spatial fixed points in the operator evolution indicates that the driven CFT is in a heating/non-heating phase, in which the entanglement entropy grows/oscillates in time. Additionally, the heating regime is further subdivided into a multitude of phases, with different entanglement patterns and spatial distribution of energy-momentum density, which are characterized by the number of spatial fixed points. Phase transitions between these different heating phases can be achieved simply by changing the duration of application of the driving Hamiltonian. We demonstrate the general features with concrete CFT examples and compare the results to lattice calculations and find remarkable agreement.



قيم البحث

اقرأ أيضاً

138 - Bo Han , Xueda Wen 2020
Classification of the non-equilibrium quantum many-body dynamics is a challenging problem in condensed matter physics and statistical mechanics. In this work, we study the basic question that whether a (1+1) dimensional conformal field theory (CFT) i s stable or not under a periodic driving with $N$ non-commuting Hamiltonians. Previous works showed that a Floquet (or periodically driven) CFT driven by certain $SL_2$ deformed Hamiltonians exhibit both non-heating (stable) and heating (unstable) phases. In this work, we show that the phase diagram depends on the types of driving Hamiltonians. In general, the heating phase is generic, but the non-heating phase may be absent in the phase diagram. For the existence of the non-heating phases, we give sufficient and necessary conditions for $N=2$, and sufficient conditions for $N>2$. These conditions are composed of $N$ layers of data, with each layer determined by the types of driving Hamiltonians. Our results also apply to the single quantum quench problem with $N=1$.
We extend the concept of strange correlators, defined for symmetry-protected phases in [You et al., Phys. Rev. Lett. 112, 247202 (2014)], to topological phases of matter by taking the inner product between string-net ground states and product states. The resulting two-dimensional partition functions are shown to be either critical or symmetry broken, as the corresponding transfer matrices inherit all matrix product operator symmetries of the string-net states. For the case of critical systems, those non-local matrix product operator symmetries are the lattice remnants of topological conformal defects in the field theory description. Following [Aasen et al., J. Phys. A 49, 354001 (2016)], we argue that the different conformal boundary conditions can be obtained by applying the strange correlator concept to the different topological sectors of the string-net obtained from Ocneanus tube algebra. This is demonstrated by calculating the conformal field theory spectra on the lattice in the different topological sectors for the Fibonacci/hard-hexagon and Ising string-net. Additionally, we provide a complementary perspective on symmetry-preserving real-space renormalization by showing how known tensor network renormalization methods can be understood as the approximate truncation of an exactly coarse-grained strange correlator.
We explore a conformal field theoretic interpretation of the holographic entanglement of purification, which is defined as the minimal area of entanglement wedge cross section. We argue that in AdS3/CFT2, the holographic entanglement of purification agrees with the entanglement entropy for a purified state, obtained from a special Weyl transformation, called path-integral optimizations. By definition, this special purified state has the minimal path-integral complexity. We confirm this claim in several examples.
130 - John Cardy 2017
We propose using smeared boundary states $e^{-tau H}|cal Brangle$ as variational approximations to the ground state of a conformal field theory deformed by relevant bulk operators. This is motivated by recent studies of quantum quenches in CFTs and o f the entanglement spectrum in massive theories. It gives a simple criterion for choosing which boundary state should correspond to which combination of bulk operators, and leads to a rudimentary phase diagram of the theory in the vicinity of the RG fixed point corresponding to the CFT, as well as rigorous upper bounds on the universal amplitude of the free energy. In the case of the 2d minimal models explicit formulae are available. As a side result we show that the matrix elements of bulk operators between smeared Ishibashi states are simply given by the fusion rules of the CFT.
Conformal field theories have been long known to describe the fascinating universal physics of scale invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the heart of our modern understanding of quantum field theory. For decades it has been a dream to study these intricate strongly coupled theories nonperturbatively using symmetries and other consistency conditions. This idea, called the conformal bootstrap, saw some successes in two dimensions but it is only in the last ten years that it has been fully realized in three, four, and other dimensions of interest. This renaissance has been possible both due to significant analytical progress in understanding how to set up the bootstrap equations and the development of numerical techniques for finding or constraining their solutions. These developments have led to a number of groundbreaking results, including world record determinations of critical exponents and correlation function coefficients in the Ising and $O(N)$ models in three dimensions. This article will review these exciting developments for newcomers to the bootstrap, giving an introduction to conformal field theories and the theory of conformal blocks, describing numerical techniques for the bootstrap based on convex optimization, and summarizing in detail their applications to fixed points in three and four dimensions with no or minimal supersymmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا