ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature chaos is present in off-equilibrium spin-glass dynamics

111   0   0.0 ( 0 )
 نشر من قبل Javier Moreno-Gordo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find a dynamic effect in the non-equilibrium dynamics of a spin glass that closely parallels equilibrium temperature chaos. This effect, that we name dynamic temperature chaos, is spatially heterogeneous to a large degree. The key controlling quantity is the time-growing spin-glass coherence length. Our detailed characterization of dynamic temperature chaos paves the way for the analysis of recent and forthcoming experiments. This work has been made possible thanks to the most massive simulation to date of non-equilibrium dynamics, carried out on the Janus~II custom-built supercomputer.



قيم البحث

اقرأ أيضاً

This thesis pretends to be another step in the development of numerical research in disordered systems. Specifically, we will focus on spin glasses which have demonstrated to be a fertile field from both, experimental and theoretical approaches. Thro ughout this thesis, we will discuss a variety of interesting phenomenons and we will also open new avenues to previously unexplored effects in the context of spin glasses. However, without a doubt, the leitmotiv conducting this thesis is the role of numerical simulations as a valuable tool to explore spin-glass physics. This thesis is organized into five different parts. The first part, containing the Chapter 1, is focused on introducing the spin glasses to the reader. The second part, containing the Chapter 2, is dedicated to discussing the metastate. The third part, shaped by the Chapter 3 and Chapter 4, is devoted to studying the off-equilibrium dynamics in spin glasses. Specifically, Chapter 3 is focused on discussing the growth of the coherence length in spin glasses, a key quantity that characterizes the off-equilibrium evolution of those systems. In Chapter 4 we will discuss an interesting phenomenon: the Mpemba effect. The fourth part, containing the Chapter 5, Chapter 6 and Chapter 7 is devoted to study the Temperature Chaos phenomenon in spin glasses. In Chapter 5 we introduce the main historical results on Temperature Chaos, from its origins to the last steps. In Chapter 6 we study equilibrated spin glasses and we characterize the Temperature Chaos from a static and a dynamical point of view. In Chapter 7 we tackle the problem of characterizing Temperature Chaos in off-equilibrium dynamics. The fifth and last part of the main body of the thesis corresponds to the conclusions.
The aging in a Heisenberg-like spin glass Ag(11 at% Mn) is investigated by measurements of the zero field cooled magnetic relaxation at a constant temperature after small temperature shifts $|Delta T/T_g| < 0.012$. A crossover from fully accumulative to non-accumulative aging is observed, and by converting time scales to length scales using the logarithmic growth law of the droplet model, we find a quantitative evidence that positive and negative temperature shifts cause an equivalent restart of aging (rejuvenation) in terms of dynamical length scales. This result supports the existence of a unique overlap length between a pair of equilibrium states in the spin glass system.
Domain-wall free-energy $delta F$, entropy $delta S$, and the correlation function, $C_{rm temp}$, of $delta F$ are measured independently in the four-dimensional $pm J$ Edwards-Anderson (EA) Ising spin glass. The stiffness exponent $theta$, the frac tal dimension of domain walls $d_{rm s}$ and the chaos exponent $zeta$ are extracted from the finite-size scaling analysis of $delta F$, $delta S$ and $C_{rm temp}$ respectively well inside the spin-glass phase. The three exponents are confirmed to satisfy the scaling relation $zeta=d_{rm s}/2-theta$ derived by the droplet theory within our numerical accuracy. We also study bond chaos induced by random variation of bonds, and find that the bond and temperature perturbations yield the universal chaos effects described by a common scaling function and the chaos exponent. These results strongly support the appropriateness of the droplet theory for the description of chaos effect in the EA Ising spin glasses.
113 - M.A. Montemurro 2000
In this work we study numerically the out of equilibrium dynamics of the Hopfield model for associative memory inside its spin-glass phase. Besides its interest as a neural network model it can also be considered as a prototype of fully connected mag netic systems with randomness and frustration. By adjusting the ratio between the number of stored configurations $p$ and the total number of neurons $N$ one can control the phase-space structure, whose complexity can vary between the simple mean-field ferromagnet (when $p=1$) and that of the Sherrington-Kirkpatrick spin-glass model (for a properly taken limit of an infinite number of patterns). In particular, little attention has been devoted to the spin-glass phase of this model. In this work we analyse the two-time auto-correlation function, the decay of the magnetization and the distribution of overlaps between states. The results show that within the spin-glass phase of the model the dynamics exhibits ageing phenomena and presents features that suggest a non trivial breaking of replica symmetry.
116 - P. E. Jonsson , H. Yoshino , 2002
Reply to the Comment by L. Berthier and J.-P. Bouchaud, Phys. Rev. Lett. 90, 059701 (2003), also cond-mat/0209165, on our paper Phys. Rev. Lett. 89, 097201 (2002), also cond-mat/0203444
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا