ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributional uncertainty of the financial time series measured by G-expectation

58   0   0.0 ( 0 )
 نشر من قبل Shuzhen Yang
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on law of large numbers and central limit theorem under nonlinear expectation, we introduce a new method of using G-normal distribution to measure financial risks. Applying max-mean estimators and small windows method, we establish autoregressive models to determine the parameters of G-normal distribution, i.e., the return, maximal and minimal volatilities of the time series. Utilizing the value at risk (VaR) predictor model under G-normal distribution, we show that the G-VaR model gives an excellent performance in predicting the VaR for a benchmark dataset comparing to many well-known VaR predictors.

قيم البحث

اقرأ أيضاً

Data augmentation methods in combination with deep neural networks have been used extensively in computer vision on classification tasks, achieving great success; however, their use in time series classification is still at an early stage. This is ev en more so in the field of financial prediction, where data tends to be small, noisy and non-stationary. In this paper we evaluate several augmentation methods applied to stocks datasets using two state-of-the-art deep learning models. The results show that several augmentation methods significantly improve financial performance when used in combination with a trading strategy. For a relatively small dataset ($approx30K$ samples), augmentation methods achieve up to $400%$ improvement in risk adjusted return performance; for a larger stock dataset ($approx300K$ samples), results show up to $40%$ improvement.
The application of deep learning to time series forecasting is one of the major challenges in present machine learning. We propose a novel methodology that combines machine learning and image processing methods to define and predict market states wit h intraday financial data. A wavelet transform is applied to the log-return of stock prices for both image extraction and denoising. A convolutional neural network then extracts patterns from denoised wavelet images to classify daily time series, i.e. a market state is associated with the binary prediction of the daily close price movement based on the wavelet image constructed from the price changes in the first hours of the day. This method overcomes the low signal-to-noise ratio problem in financial time series and gets a competitive prediction accuracy of the market states Up and Down of financial data as tested on the S&P 500.
The study of record statistics of correlated series is gaining momentum. In this work, we study the records statistics of the time series of select stock market data and the geometric random walk, primarily through simulations. We show that the distr ibution of the age of records is a power law with the exponent $alpha$ lying in the range $1.5 le alpha le 1.8$. Further, the longest record ages follow the Fr{e}chet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that from the empirical stock data.
We study tick-by-tick financial returns belonging to the FTSE MIB index of the Italian Stock Exchange (Borsa Italiana). We can confirm previously detected non-stationarities. However, scaling properties reported in the previous literature for other h igh-frequency financial data are only approximately valid. As a consequence of the empirical analyses, we propose a simple method for describing non-stationary returns, based on a non-homogeneous normal compound Poisson process. We test this model against the empirical findings and it turns out that the model can approximately reproduce several stylized facts of high-frequency financial time series. Moreover, using Monte Carlo simulations, we analyze order selection for this model class using three information criteria: Akaikes information criterion (AIC), the Bayesian information criterion (BIC) and the Hannan-Quinn information criterion (HQ). For comparison, we also perform a similar Monte Carlo experiment for the ACD (autoregressive conditional duration) model. Our results show that the information criteria work best for small parameter numbers for the compound Poisson type models, whereas for the ACD model the model selection procedure does not work well in certain cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا