ﻻ يوجد ملخص باللغة العربية
The disks of Active Galactic Nuclei (AGNs), traditionally studied as the feeders of the supermassive black holes (SMBHs) at their centers, have recently triggered a lot of interest also as hosts to massive stars and hence their neutron star (NS) and black hole (BH) remnants. Migration traps and gas torques in these disks favor binary formation and enhance the rate of compact object mergers. In these environments both long gamma-ray bursts (GRBs) from the death of massive stars and short GRBs from NS-NS and NS-BH mergers are expected. However, their properties in the unique environments of AGN disks have never been studied. Here we show that GRBs in AGNs can display unique features, owing to the unusual relative position of the shocks that characterize the burst evolution and the Thomson photosphere of the AGN disk. In dense environments, for example, the external shock develops before the internal shocks, leading to prompt emission powered by a relativistic reverse shock. The transients time evolution is also compressed, yielding afterglow emission that is much brighter and peaks much earlier than for GRBs in the interstellar medium. Additionally, in regions of the disk that are sufficiently dense and extended, the light curves are dominated by diffusion, since the fireball is trapped inside the disc photosphere. These diffusion-dominated transients emerge on timescales of days in disks around SMBHs of $sim 10^6 M_odot$ to years for SMBHs of $sim 10^8 M_odot$. Finally, a large fraction of events, especially in AGNs with SMBHs $lesssim 10^7 M_odot$, display time-variable absorption in the X-ray band.
Mildly relativistic, oblique shocks are frequently invoked as possible sites of relativistic particle acceleration and production of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars, via diffusive s
Supernova (SN) explosions can potentially affect the structure and evolution of circumnuclear disks in active galactic nuclei (AGN). Some previous studies have suggested that a relatively low rate of SN explosions can provide an effective value of al
The hydrodynamics of an ultrarelativistic flow, enclosed by a strong shock wave, are described by the well known Blandford-McKee solutions in spherical geometry. These solutions, however, become inaccurate at a distance $sim R/2$ behind the shock wav
We present late-time radio and X-ray observations of the nearby sub-energetic Gamma-Ray Burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB100316D to be intermediate between hig
Recent mid-infrared interferometry observations of nearby active galactic nuclei (AGN) revealed that a significant part of the dust emission extends in the polar direction, rather than the equatorial torus/disk direction as expected by the traditiona