ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of DC electrical breakdown in liquid helium through analysis of the empirical breakdown field distributions

99   0   0.0 ( 0 )
 نشر من قبل Nguyen Phan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results from a study on electrical breakdown in liquid helium using near-uniform-field stainless steel electrodes with a stressed area of $sim$0.725 cm$^2$. The distribution of the breakdown field is obtained for temperatures between 1.7 K and 4.0 K, pressures between the saturated vapor pressure and 626 Torr, and with electrodes of different surface polishes. A data-based approach for determining the electrode-surface-area scaling of the breakdown field is presented. The dependence of the breakdown probability on the field strength as extracted from the breakdown field distribution data is used to show that breakdown is a surface phenomenon closely correlated with Fowler-Nordheim field emission from asperities on the cathode. We show that the results from this analysis provides an explanation for the supposed electrode gap-size effect and also allows for a determination of the breakdown-field distribution for arbitrary shaped electrodes. Most importantly, the analysis method presented in this work can be extended to other noble liquids to explore the dependencies for electrical breakdown in those media.


قيم البحث

اقرأ أيضاً

Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets for ion transport in high pressur e xenon gas. This would require carpet functionality in regimes at higher pressures than have been previously reported, implying correspondingly larger electrode voltages than in existing systems. This mode of operation appears plausible for contemporary RF-carpet geometries due to the higher predicted breakdown strength of high pressure xenon relative to low pressure helium, the working medium in most existing RF carpet devices. In this paper we present the first measurements of the high voltage dielectric strength of xenon gas at high pressure and at the relevant RF frequencies for ion transport (in the 10 MHz range), as well as new DC and RF measurements of the dielectric strengths of high pressure argon and helium gases at small gap sizes. We find breakdown voltages that are compatible with stable RF carpet operation given the gas, pressure, voltage, materials and geometry of interest.
81 - T. M. Ito , J. C. Ramsey , W. Yao 2015
We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and $sim$600 torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of $1-2$ cm between them, and a potential up to $pm 50$ kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, $I<1$ pA at 45 kV, correspond to a lower bound on the effective volume resistivity of LHe of $rho_V > 5times10^{18}$ $Omegacdot$cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.
As noble liquid time projection chambers grow in size their high voltage requirements increase, and detailed, reproducible studies of dielectric breakdown and the onset of electroluminescence are needed to inform their design. The Xenon Breakdown App aratus (XeBrA) is a 5-liter cryogenic chamber built to characterize the DC high voltage breakdown behavior of liquid xenon and liquid argon. Electrodes with areas up to 33~cm$^2$ were tested while varying the cathode-anode separation from 1 to 6~mm with a voltage difference up to 75~kV. A power-law relationship between breakdown field and electrode area was observed. The breakdown behavior of liquid argon and liquid xenon within the same experimental apparatus was comparable.
The subject of the present theoretical and experimental investigations is the effect of the external magnetic field induction on dark current and a possibility of breakdown. The generalization of the Fowler-Nordheim equation makes it possible to take into account the influence of a magnetic field parallel to the cathode surface on the field emission current. The reduction in the breakdown voltage due to the increment in electron-impact ionization was theoretical predicted. Experimentally shown that the presence of a magnetic field about a tenth as a large as the cutoff magnetic field [18] reduces the breakdown voltage by 10% to 20% for practically all cathodes no matter what their surface treatment.
Cosmic ray (CR) interactions can be a challenging source of background for neutrino oscillation and cross-section measurements in surface detectors. We present methods for CR rejection in measurements of charged-current quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton in the final state, measured using liquid argon time projection chambers (LArTPCs). Using a sample of cosmic data collected with the MicroBooNE detector, mixed with simulated neutrino scattering events, a set of event selection criteria is developed that produces an event sample with minimal contribution from CR background. Depending on the selection criteria used a purity between 50% and 80% can be achieved with a signal selection efficiency between 50% and 25%, with higher purity coming at the expense of lower efficiency. While using a specific dataset from the MicroBooNE detector and selection criteria values optimized for CCQE-like events, the concepts presented here are generic and can be adapted for various studies of exclusive { u}{mu} interactions in LArTPCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا