ترغب بنشر مسار تعليمي؟ اضغط هنا

Ensemble fluctuations matter for variances of macroscopic variables

65   0   0.0 ( 0 )
 نشر من قبل J. Wittmer P.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extending recent work on stress fluctuations in complex fluids and amorphous solids we describe in general terms the ensemble average $v(Delta t)$ and the standard deviation $delta v(Delta t)$ of the variance $v[mathbf{x}]$ of time series $mathbf{x}$ of a stochastic process $x(t)$ measured over a finite sampling time $Delta t$. Assuming a stationary, Gaussian and ergodic process, $delta v$ is given by a functional $delta v_G[h]$ of the autocorrelation function $h(t)$. $delta v(Delta t)$ is shown to become large and similar to $v(Delta t)$ if $Delta t$ corresponds to a fast relaxation process. Albeit $delta v = delta v_G[h]$ does not hold in general for non-ergodic systems, the deviations for common systems with many microstates are merely finite-size corrections. Various issues are illustrated for shear-stress fluctuations in simple coarse-grained model systems.



قيم البحث

اقرأ أيضاً

We demonstrate the application of the circular cumulant approach for thermodynamically large populations of phase elements, where the Ott-Antonsen properties are violated by a multiplicative intrinsic noise. The infinite cumulant equation chain is de rived for the case of a sinusoidal sensitivity of the phase to noise. For inhomogeneous populations, a Lorentzian distribution of natural frequencies is adopted. Two-cumulant model reductions, which serve as a generalization of the Ott-Antonsen ansatz, are reported. The accuracy of these model reductions and the macroscopic collective dynamics of the system are explored for the case of a Kuramototype global coupling. The Ott-Antonsen ansatz and the Gaussian approximation are found to be not uniformly accurate for non-high frequencies.
It is generally believed that, in the thermodynamic limit, the microcanonical description as a function of energy coincides with the canonical description as a function of temperature. However, various examples of systems for which the microcanonical and canonical ensembles are not equivalent have been identified. A complete theory of this intriguing phenomenon is still missing. Here we show that ensemble nonequivalence can manifest itself also in random graphs with topological constraints. We find that, while graphs with a given number of links are ensemble-equivalent, graphs with a given degree sequence are not. This result holds irrespective of whether the energy is nonadditive (as in unipartite graphs) or additive (as in bipartite graphs). In contrast with previous expectations, our results show that: (1) physically, nonequivalence can be induced by an extensive number of local constraints, and not necessarily by long-range interactions or nonadditivity; (2) mathematically, nonquivalence is determined by a different large-deviation behaviour of microcanonical and canonical probabilities for a single microstate, and not necessarily for almost all microstates. The latter criterion, which is entirely local, is not restricted to networks and holds in general.
The dominant reaction pathway (DRP) is a rigorous framework to microscopically compute the most probable trajectories, in non-equilibrium transitions. In the low-temperature regime, such dominant pathways encode the information about the reaction mec hanism and can be used to estimate non-equilibrium averages of arbitrary observables. On the other hand, at sufficiently high temperatures, the stochastic fluctuations around the dominant paths become important and have to be taken into account. In this work, we develop a technique to systematically include the effects of such stochastic fluctuations, to order k_B T. This method is used to compute the probability for a transition to take place through a specific reaction channel and to evaluate the reaction rate.
162 - Guilhem Semerjian 2007
The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.
We consider the structure functions S^(q)(T), i.e. the moments of order q of the increments X(t+T)-X(t) of the Foreign Exchange rate X(t) which give clear evidence of scaling (S^(q)(T)~T^z(q)). We demonstrate that the nonlinearity of the observed sca ling exponent z(q) is incompatible with monofractal additive stochastic models usually introduced in finance: Brownian motion, Levy processes and their truncat
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا