ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing voice conversion network with cycle consistency loss of speaker identity

159   0   0.0 ( 0 )
 نشر من قبل Hongqiang Du
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel training scheme to optimize voice conversion network with a speaker identity loss function. The training scheme not only minimizes frame-level spectral loss, but also speaker identity loss. We introduce a cycle consistency loss that constrains the converted speech to maintain the same speaker identity as reference speech at utterance level. While the proposed training scheme is applicable to any voice conversion networks, we formulate the study under the average model voice conversion framework in this paper. Experiments conducted on CMU-ARCTIC and CSTR-VCTK corpus confirm that the proposed method outperforms baseline methods in terms of speaker similarity.



قيم البحث

اقرأ أيضاً

Content and style representations have been widely studied in the field of style transfer. In this paper, we propose a new loss function using speaker content representation for audio source separation, and we call it speaker representation loss. The objective is to extract the target speaker voice from the noisy input and also remove it from the residual components. Compared to the conventional spectral reconstruction, our proposed framework maximizes the use of target speaker information by minimizing the distance between the speaker representations of reference and source separation output. We also propose triplet speaker representation loss as an additional criterion to remove the target speaker information from residual spectrogram output. VoiceFilter framework is adopted to evaluate source separation performance using the VCTK database, and we achieved improved performances compared to the baseline loss function without any additional network parameters.
270 - Hongqiang Du , Lei Xie 2021
One-shot voice conversion has received significant attention since only one utterance from source speaker and target speaker respectively is required. Moreover, source speaker and target speaker do not need to be seen during training. However, availa ble one-shot voice conversion approaches are not stable for unseen speakers as the speaker embedding extracted from one utterance of an unseen speaker is not reliable. In this paper, we propose a deep discriminative speaker encoder to extract speaker embedding from one utterance more effectively. Specifically, the speaker encoder first integrates residual network and squeeze-and-excitation network to extract discriminative speaker information in frame level by modeling frame-wise and channel-wise interdependence in features. Then attention mechanism is introduced to further emphasize speaker related information via assigning different weights to frame level speaker information. Finally a statistic pooling layer is used to aggregate weighted frame level speaker information to form utterance level speaker embedding. The experimental results demonstrate that our proposed speaker encoder can improve the robustness of one-shot voice conversion for unseen speakers and outperforms baseline systems in terms of speech quality and speaker similarity.
In this paper, we focus on improving the performance of the text-dependent speaker verification system in the scenario of limited training data. The speaker verification system deep learning based text-dependent generally needs a large scale text-dep endent training data set which could be labor and cost expensive, especially for customized new wake-up words. In recent studies, voice conversion systems that can generate high quality synthesized speech of seen and unseen speakers have been proposed. Inspired by those works, we adopt two different voice conversion methods as well as the very simple re-sampling approach to generate new text-dependent speech samples for data augmentation purposes. Experimental results show that the proposed method significantly improves the Equal Error Rare performance from 6.51% to 4.51% in the scenario of limited training data.
Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody in speech, which is different for different speakers. Models like cycle-consistent adversarial network (Cycle-GAN) and variational auto-encoder (VAE) have been successfully applied to voice conversion tasks without parallel data. However, due to the neural network architectures and feature vectors chosen for these approaches, the length of the predicted utterance has to be fixed to that of the input utterance, which limits the flexibility in mimicking the speaking rates and rhythmic patterns for the target speaker. On the other hand, sequence-to-sequence learning model was used to remove the above length constraint, but parallel training data are needed. In this paper, we propose an approach utilizing sequence-to-sequence model trained with unsupervised Cycle-GAN to perform the transformation between the phoneme posteriorgram sequences for different speakers. In this way, the length constraint mentioned above is removed to offer rhythm-flexible voice conversion without requiring parallel data. Preliminary evaluation on two datasets showed very encouraging results.
We propose a new paradigm for maintaining speaker identity in dysarthric voice conversion (DVC). The poor quality of dysarthric speech can be greatly improved by statistical VC, but as the normal speech utterances of a dysarthria patient are nearly i mpossible to collect, previous work failed to recover the individuality of the patient. In light of this, we suggest a novel, two-stage approach for DVC, which is highly flexible in that no normal speech of the patient is required. First, a powerful parallel sequence-to-sequence model converts the input dysarthric speech into a normal speech of a reference speaker as an intermediate product, and a nonparallel, frame-wise VC model realized with a variational autoencoder then converts the speaker identity of the reference speech back to that of the patient while assumed to be capable of preserving the enhanced quality. We investigate several design options. Experimental evaluation results demonstrate the potential of our approach to improving the quality of the dysarthric speech while maintaining the speaker identity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا