ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Sub-Gaussian Mean Estimation in $mathbb{R}$

393   0   0.0 ( 0 )
 نشر من قبل Jasper C.H. Lee
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the problem of estimating the mean of a real-valued distribution, presenting a novel estimator with sub-Gaussian convergence: intuitively, our estimator, on any distribution, is as accurate as the sample mean is for the Gaussian distribution of matching variance. Crucially, in contrast to prior works, our estimator does not require prior knowledge of the variance, and works across the entire gamut of distributions with bounded variance, including those without any higher moments. Parameterized by the sample size $n$, the failure probability $delta$, and the variance $sigma^2$, our estimator is accurate to within $sigmacdot(1+o(1))sqrt{frac{2logfrac{1}{delta}}{n}}$, tight up to the $1+o(1)$ factor. Our estimator construction and analysis gives a framework generalizable to other problems, tightly analyzing a sum of dependent random variables by viewing the sum implicitly as a 2-parameter $psi$-estimator, and constructing bounds using mathematical programming and duality techniques.



قيم البحث

اقرأ أيضاً

We discuss the possibilities and limitations of estimating the mean of a real-valued random variable from independent and identically distributed observations from a non-asymptotic point of view. In particular, we define estimators with a sub-Gaussia n behavior even for certain heavy-tailed distributions. We also prove various impossibility results for mean estimators.
Motivated by geometric problems in signal processing, computer vision, and structural biology, we study a class of orbit recovery problems where we observe very noisy copies of an unknown signal, each acted upon by a random element of some group (suc h as Z/p or SO(3)). The goal is to recover the orbit of the signal under the group action in the high-noise regime. This generalizes problems of interest such as multi-reference alignment (MRA) and the reconstruction problem in cryo-electron microscopy (cryo-EM). We obtain matching lower and upper bounds on the sample complexity of these problems in high generality, showing that the statistical difficulty is intricately determined by the invariant theory of the underlying symmetry group. In particular, we determine that for cryo-EM with noise variance $sigma^2$ and uniform viewing directions, the number of samples required scales as $sigma^6$. We match this bound with a novel algorithm for ab initio reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from heterogeneous cryo-EM samples.
We consider the problem of estimating the covariance matrix of a random signal observed through unknown translations (modeled by cyclic shifts) and corrupted by noise. Solving this problem allows to discover low-rank structures masked by the existenc e of translations (which act as nuisance parameters), with direct application to Principal Components Analysis (PCA). We assume that the underlying signal is of length $L$ and follows a standard factor model with mean zero and $r$ normally-distributed factors. To recover the covariance matrix in this case, we propose to employ the second- and fourth-order shift-invariant moments of the signal known as the $textit{power spectrum}$ and the $textit{trispectrum}$. We prove that they are sufficient for recovering the covariance matrix (under a certain technical condition) when $r<sqrt{L}$. Correspondingly, we provide a polynomial-time procedure for estimating the covariance matrix from many (translated and noisy) observations, where no explicit knowledge of $r$ is required, and prove the procedures statistical consistency. While our results establish that covariance estimation is possible from the power spectrum and the trispectrum for low-rank covariance matrices, we prove that this is not the case for full-rank covariance matrices. We conduct numerical experiments that corroborate our theoretical findings, and demonstrate the favorable performance of our algorithms in various settings, including in high levels of noise.
We study the problem of outlier robust high-dimensional mean estimation under a finite covariance assumption, and more broadly under finite low-degree moment assumptions. We consider a standard stability condition from the recent robust statistics li terature and prove that, except with exponentially small failure probability, there exists a large fraction of the inliers satisfying this condition. As a corollary, it follows that a number of recently developed algorithms for robust mean estimation, including iterative filtering and non-convex gradient descent, give optimal error estimators with (near-)subgaussian rates. Previous analyses of these algorithms gave significantly suboptimal rates. As a corollary of our approach, we obtain the first computationally efficient algorithm with subgaussian rate for outlier-robust mean estimation in the strong contamination model under a finite covariance assumption.
We study the least squares estimator in the residual variance estimation context. We show that the mean squared differences of paired observations are asymptotically normally distributed. We further establish that, by regressing the mean squared diff erences of these paired observations on the squared distances between paired covariates via a simple least squares procedure, the resulting variance estimator is not only asymptotically normal and root-$n$ consistent, but also reaches the optimal bound in terms of estimation variance. We also demonstrate the advantage of the least squares estimator in comparison with existing methods in terms of the second order asymptotic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا