ﻻ يوجد ملخص باللغة العربية
We present a study of the bright detached eclipsing main sequence binary WOCS 11028 (Sanders 617) in the open cluster M67. Although the binary has only one eclipse per orbital cycle, we show that the masses of the stars can be derived very precisely thanks to a strong constraint on the orbital inclination: $M_A = 1.222pm0.006 M_odot$ and $M_B = 0.909pm0.004 M_odot$. We use a spectral energy distribution fitting method to derive characteristics of the component stars in lieu of the precise radii that would normally be derived from a doubly-eclipsing binary. The deconvolution of the SEDs reveals that the brighter component of the binary is at the faint turnoff point for the cluster -- a distinct evolutionary point that occurs after the convective core has been established and while the star is in the middle of its movement toward lower surface temperature, before the so-called hook at the end of main sequence. The measurements are in distinct disagreement with evolution models at solar metallicity: higher metal abundances are needed to reproduce the characteristics of WOCS 11028 A. We discuss the changes to model physics that are likely to be needed to address the discrepancies. The clearest conclusions are that diffusion is probably necessary to reconcile spectroscopic abundances of M67 stars with the need for higher metallicity models, and that reduced strength convective overshooting is occurring for stars at the turnoff. At super-solar bulk metallicity, various indicators agree on a cluster age between about 3.5 and 4.0 Gyr.
Observations of stellar clusters have had a tremendous impact in forming our understanding of stellar evolution. The open cluster M67 has a particularly important role as a calibration benchmark for stellar evolution theory due to its near solar comp
We present an analysis of a slightly eccentric ($e=0.05$), partially eclipsing long-period ($P = 69.73$ d) main sequence binary system (WOCS 12009, Sanders 1247) in the benchmark old open cluster M67. Using Kepler K2 and ground-based photometry along
Yellow straggler stars (YSSs) fall above the subgiant branch in optical color-magnitude diagrams, between the blue stragglers and the red giants. YSSs may represent a population of evolved blue stragglers, but none have the direct and precise mass an
We present the results of a 47-ks Chandra-ACIS observation of the old open cluster M67. We detected 25 proper-motion cluster members (including ten new sources) and 12 sources (all new) that we suspect to be members from their locations close to the
The open cluster M67 offers the unique opportunity to measure rotation periods for solar-age stars across a range of masses, potentially filling a critical gap in the understanding of angular momentum loss in older main sequence stars. The observatio